ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti

Antonio Lanteri, Marino Palleschi

On k-dimensional elliptic scrolls

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **68** (1980), n.5, p. 407–415. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1980_8_68_5_407_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1980.

Geometria algebrica. — On k-dimensional elliptic scrolls (*). Nota di Antonio Lanteri e Marino Palleschi (**), presentata (***) dal Corrisp. E. Marchionna.

RIASSUNTO. — Le varietà algebriche proiettive complesse, non singolari, di dimensione $k \ge 3$ (grado d > 3), a curva sezione ellittica, o sono razionali o sono fasci ellittici di spazi lineari.

Le varietà del primo tipo sono state studiate e classificate da Enriques (cfr. [2], [3]) e Scorza (cfr. [8]); alle varietà del secondo tipo è dedicata la presente Nota.

Si illustrano alcune proprietà delle varietà fibrate in spazi lineari su di una curva ellittica, e si studiano i loro modelli linearmente normali W. Indicati con d e k il grado e la dimensione di una siffatta W e con n la dimensione del minimo spazio di appartenenza, si dimostra che $d \ge 2k + 1$, d = n - 1. Infine, assegnata la curva ellittica base, si costruisce un modello esplicito di una W del tipo considerato per una qualunque dimensione k e per un qualunque grado $d \ge 2k + 1$.

1. – This paper is concerned with k-dimensional projective irreducible and complex algebraic varieties with elliptic curve sections with special regard to k-dimensional elliptic scrolls.

The k-dimensional varieties $W \subset \mathbf{P}^n$ with elliptic curve sections were studied by Castelnuovo (cf. [1]) for k = 2, Enriques (cf. [2], [3]) for k = 3and Scorza (cf. [8], [9]) for $k \geq 3$. Substantially they show that such varieties (but cones and cubic hypersurfaces) are either elliptic pencils of \mathbf{P}^{k-1} 's or rational varieties.

The rational case is deeply analyzed in the previously quoted works by Enriques and Scorza (see also [7], pp. 59-60).

The present paper is devoted to the study of the elliptic case (not developed in the classical works).

Specifically here we consider an irreducible smooth k-dimensional $(k \ge 3)$ complex algebraic variety $W \subset \mathbf{P}^n$ with elliptic curve sections. In sec. 3 we notice that if W is neither a rational variety nor a cubic hypersurface, then it is an elliptic k-scroll. In sec. 4 we show that the linearly normal models of such W's are varieties of degree d in \mathbf{P}^{d-1} (non-hyperplane). We complete this result by proving (Theorem 4.2) that a k-dimensional $(k \ge 2)$ linearly normal variety $W'_d \subset \mathbf{P}^n$ of degree d with elliptic curve sections is an elliptic

^(*) Lavoro eseguito nell'ambito dell'attività del G.N.S.A.G.A. del C.N.R.

^(**) Istituto matematico «F. Enriques» - Via C. Saldini, 50 - Milano.

^(***) Nella seduta del 10 maggio 1980.

k-scroll if and only if n = d - 1. In sec. 5 we prove that an elliptic *k*-scroll $(k \ge 2)$ $W_d \subset \mathbf{P}^{d-1}$ has degree $d \ge 2 k + 1$, and we show that for every admissible *d* there exists an elliptic *k*-scroll of degree *d*, by constructing an explicit model of it.

2. - From now on, the word variety will always mean irreducible complex projective algebraic variety. Such a variety of dimension k = 1 or k = 2 will be called curve or surface respectively.

Let V be a smooth variety of any dimension k, and |D| the complete linear system associated to a divisor D on V. We shall denote by \mathcal{O}_V the structural sheaf of V; by $\mathcal{O}_V(D)$ the invertible sheaf associated to D; by $h^q(\mathcal{O}_V(D)) = h^q(D)$ the complex dimension of the q-th cohomology vector space $H^q(V, \mathcal{O}_V(D)) =$ $= H^q(\mathcal{O}_V(D))$. In the case $k \ge 2$ consider an irreducible and smooth hypersurface S on V; it is known that there exists a divisor D' on V, linearly equivalent to D (briefly $D' \equiv D$) which does not contain S as a component and is transversal to S. By D · S we denote the divisor on S (defined mod linear equivalence) which D' cuts out on S. For k = 2 the symbol (D · C) represents the intersection index of the divisors D and C on the surface V; if $D \equiv C$, we also write $(D \cdot C) = (C^2)$.

Now let B be a smooth curve and \mathbf{P}^r the *r*-dimensional complex projective space. From now on, by saying that a variety V is contained in \mathbf{P}^r (or by writing $V \subset \mathbf{P}^r$) we mean that V is in \mathbf{P}^r but not in any hyperplane of its.

A *k*-dimensional scroll over B (briefly a *k*-scroll) is a smooth variety V embedded in some \mathbf{P}^r endowed with a morphism $\pi: V \to B$ such that $F_b = \pi^{-1}(b)$ is a \mathbf{P}^{k-1} , for each $b \in B^{(1)}$. If B is an elliptic curve, such a V is said an elliptic *k*-scroll.

Finally we introduce some other notations occurring in the sequel. On a k-dimensional smooth variety V consider a very ample divisor H. Obviously it is always possible to choose $i (i = 1, \dots, k - 1)$ smooth irreducible hypersurfaces H^1, H^2, \dots, H^i , belonging to |H|, pairwise transversal and such that the (k - i)-dimensional algebraic characteristic cycle $H_{k-i} = H^1 \cap$ $\cap H^2 \cap \dots \cap H^i$ (defined by intersecting these *i* hypersurfaces) is irreducible and smooth. We denote also by E the characteristic cycle H_1 .

By means of well-known facts holding for complex smooth varieties, some standard cohomological calculations (see [4], sec. 2) give

Remark 2.1. If $k \ge 3$ and $h^1(\mathcal{O}_{H_2}) = 0$, then $h^0(\mathcal{O}_V(H)) = h^0(\mathcal{O}_{H_2}(E)) + k - 2$.

Remark 2.2. Suppose $k \ge 3$ and $h^1(\mathcal{O}_{H_2}) = 1$, $h^2(\mathcal{O}_{H_2}) = h^1(\mathcal{O}_{H_2}(E)) = 0$. Then $h^0(\mathcal{O}_V(H)) = h^0(\mathcal{O}_{H_2}(E)) + s$, where $0 \le s \le k - 2$.

(1) Remark that a k-scroll is a model of the projectivized Proj (\mathscr{E}) of a vector bundle \mathscr{E} of rank k over B.

A. LANTERI e M. PALLESCHI, On k-dimensional elliptic scrolls

3. - In [8] G. Scorza studied the k-dimensional varieties $W \subset \mathbf{P}^n$ with elliptic curve sections. If such a variety W is not a cone and if deg W > 3, then he shows that W must be either a rational variety or an elliptic pencil of \mathbf{P}^{k-1} 's. Now, recalling the notations introduced in sec. 2 and denoting by Φ_H the closed immersion defined by |H|, this result can be restated as follows.

THEOREM 3.1. (Enriques-Scorza). – Let V be a k-dimensional smooth variety $(k \ge 3)$ endowed with a very ample linear system |H| the general characteristic 1-cycle E of which is an elliptic curve. Then only the following cases can occur:

- i) V is isomorphic, via $\Phi_{\rm H}$, to a smooth cubic hypersurface of ${\bf P}^{k+1}$;
- ii) V is a rational variety;
- iii) V is isomorphic, via $\Phi_{\rm H}$, to an elliptic k-scroll over E.

Another proof, different from the original one, can be found in [4].

Remark 3.1. If E is an elliptic curve, the 2-dimensional characteristic cycle H_2 is either a rational surface or it is isomorphic to an elliptic 2-scroll (Castelnuovo [1]; for a different proof working over any algebraically closed field see also [6], Theorem 3.1). From the proof of Theorem 3.1 in [4], one sees that the former case corresponds to *i*) and *ii*), whilst the latter case corresponds to *iii*). In the former case Remark 2.1 shows that the linearly normal models $W_d = \Phi_H(V)$ of the V's occurring in case *ii*) are varieties of degree $d = (E^2)$ in \mathbf{P}^{d+k-2} .

For the sequel we need also the following

Remark 3.2. Let $W \subset \mathbf{P}^n$ be a k-scroll $(k \ge 3)$ over a (smooth) curve B and let H' be a hyperplane section of its. Then there happens: either i) H' is a (k-1)-scroll over B, or ii) H' = F_{b1} + ... + F_{br} + S where F_{bi} is a fibre of W and S is a (k-1)-scroll over B⁽²⁾, (cf. [4]).

4. – Theorem 3.1 is particularly meaningful when H is a general hyperplane section of a smooth k-dimensional variety $W \subset \mathbf{P}^n$. In this case it says that a smooth variety $W_d \subset \mathbf{P}^n$ of degree d > 3 with elliptic curve sections is either a rational variety or an elliptic k-scroll. The rational case (case *ii*) of Theorem 3.1) has been studied, for k = 3, by Enriques in [2] (see also [3]). He proved that the linearly normal models of the rational threefolds with elliptic curve sections are varieties $W_d \subset \mathbf{P}^{d+1}$ of degree $d (4 \le d \le 8)$ representable on \mathbf{P}^3 by a linear system of quadric or cubic surfaces. For k > 3, the linearly normal models in the rational case have been studied by Scorza (cf. [8]). They are, for k = 4, a $W_5 \subset \mathbf{P}^7$, and a $W_6 \subset \mathbf{P}^8$; for k = 5, a

(2) In a sense this Remark has a converse (see [4], Prop. 3.1); it could also be easily proven (cf. the following Theorem 5.1) that $1 \le r \le \deg W - 2k + 1$.

 $W_5 \subset \mathbf{P}^8$; for k = 6 the Grassmannian $W_5 \subset \mathbf{P}^9$, and, for each $k \ge 3$, there is always the complete intersection $W_4 \subset \mathbf{P}^{k+2}$ of two quadrics.

This sec. is meanly devoted to the analysis of elliptic k-scrolls, i.e. we are dealing with the case iii of Theorem 3.1.

Now consider a k-dimensional smooth variety $V (k \ge 2)$, a complete very ample linear system |H| on V, and its characteristic cycles H_2 and $H_1 = E$. From now on suppose E is an elliptic curve; so we know (cf. [6]) H_2 is either a rational surface or an elliptic geometrically ruled surface (to wit it is isomorphic to an elliptic 2-scroll). From now on suppose also we are in the latter case; so, if $k \ge 3$ all we said in Remark 3.1 implies that *the variety* $W_d = \Phi_H(V)$ is a linearly normal elliptic k-scroll of degree $d = (E^2)$; note that this conclusion holds also for k = 2 (cf. [6]). It is known (cf. [6], p. 91) that

$$h^{0}(\mathcal{O}_{\mathbf{H}_{2}}(\mathbf{E})) = d$$

and $k^1(\mathcal{O}_{H_2}(E)) = 0$; moreover, as H_2 is supposed to be an elliptic ruled surface if $k \geq 3$, we can apply Remark 2.2 and conclude that

(4.2)
$$h^0(\mathcal{O}_{\mathbf{V}}(\mathbf{H})) = d + s,$$

where $0 \le s \le k-2$. So, a priori, W_d is a linearly normal k-scroll of degree d in \mathbf{P}^{d+s-1} . Really, for each $k \ge 2$ (if k = 2 see (4.1)), we can prove the following

THEOREM 4.1. W_d is contained in \mathbf{P}^{d-1} (i.e. s = 0).

Proof. In case k = 2 our thesis follows immediately from all we said; so we prove the theorem by induction on k.

Step 1. There results $s \leq 1$. By Remark 3.2 the general hyperplane section of $W_d \subset \mathbf{P}^{d+s-1}$ is an elliptic (k-1)-scroll $H_d \subset \mathbf{P}^{d+s-2}$ of degree d. Were H_d linearly normal, the dimension of the corresponding embedding space should be n = d - 1, by induction; if not, it would be n < d - 1. So we must have $n = d + s - 2 \leq d - 1$.

Step 2. There results s = 0. By absurd suppose s = 1, i.e. $W_d \subset \mathbf{P}^d$. We are proving this fact can not occur by analyzing the following three cases:

(a) d < 2 k - 1; (b) $d \ge 2 k$; (c) d = 2 k - 1.

In case (a) the thesis is trivial; in fact two distinct fibres $F_1 = \mathbf{P}^{k-1}$ and $F_2 = \mathbf{P}^{k-1}$ of W_d generate a \mathbf{P}^{2k-1} .

In case (b) the linear span $\langle F_a, F_b \rangle$ of two fibres F_a and F_b of W_d has codimension ≥ 1 ; so there exists a hyperlane $\Pi \supseteq \langle F_a, F_b \rangle$. In view of Remark 3.2, we have

$$\Pi \cap W_d = F_a + F_b + F_{a_1} + \cdots + F_{a_i} + S,$$

410

where F_{a_1}, \dots, F_{a_i} are fibres of W_d and S is an elliptic (k-1)-scroll of degree d-2-i. Suppose S is contained in \mathbf{P}^n (and not in any hyperplane of its). By induction

 $(4.3) n \leq d-2-i-1.$

Denote by $L = \langle S, F_{a_1}, \dots, F_{a_i}, F_a \rangle$ the linear span of S and $F_{a_1}, \dots, F_{a_i}, F_a$. Remark that S cuts out on each fibre F of W_d the \mathbf{P}^{k-2} which is the corresponding fibre of S; there follows that dim $L \leq n + i + 1$; recalling (4.3), dim $L \leq d - 2$. So there is a pencil $\{\Pi_t\}_{t \in \mathbf{P}^1}$ of hyperplanes $\Pi_t \subset \mathbf{P}^d$ through L, at least. Such a Π_t intersects W_d along

$$S + F_{a_1} + \cdots + F_{a_i} + F_a + R$$
,

where R is nothing but a fibre of W_d , by Remark 3.2. So it is defined a nonconstant morphism from \mathbf{P}^1 to the elliptic base B of W_d . This is absurd.

In case (c), in order to exclude the varieties $W_d \subset \mathbf{P}^d$ $(d = 2 \ k - 1)$ consider a hyperlane Π containing a fibre F of W_d and the corresponding section $\Pi \cap W_d = F + S$; by Remark 3.2, S is either a (k - 1)-scroll or a (k - 1)-scroll plus some fibres F_{a_1}, \dots, F_{a_i} . The latter case does not occur: otherwise the fibres F_{a_1} and F, contained in $\Pi = \mathbf{P}^{2k-2}$, should meet. Suppose S is contained in \mathbf{P}^n (and not in any hyperplane of its). As S has degree d - 1, by induction we have $n \leq d - 2^{(3)}$; hence there exists a pencil $\{\Pi_t\}_{t \in \mathbf{P}^1}$ of hyperplanes $\Pi_t \subset \mathbf{P}^d$ through the \mathbf{P}^n containing S. Such a Π_t intersects W_d along S + R, where, by Remark 3.2, R is nothing but a fibre of W_d . Thus we can conclude, as in case (b).

There follows immediately

Remark 4.1. Let W be an elliptic k-scroll and H' a general hyperplane section of its. Then H' and each other general characteristic cycle of |H'| is not linearly normal.

Let $W_d \subset \mathbf{P}^n$ be a smooth k-dimensional linearly normal variety $(k \ge 2)$ of degree d with elliptic curve sections. If W_d is a k-scroll, Theorem 4.1 shows that n = d - 1. On the other side if n = d - 1 and $k \ge 3$, W_d can be neither a cubic hypersurface nor a rational variety (see Remark 3.1). Hence, by Theorem 3.1, W_d is an elliptic k-scroll. The same conclusion holds if k = 2 (cf. [6] Corollary 3.1). So we can state

THEOREM 4.2. Let $W_d \subset \mathbf{P}^n$ be a k-dimensional linearly normal smooth variety $(k \ge 2)$ of degree d with elliptic curve sections. Then W_d is an elliptic k-scroll if and only if n = d - 1.

5. - As we already said the number of possible varieties occurring in case ii) of Theorem 3.1 decreases as the dimension k of the variety increases. On the contrary here we show that the degree d of the varieties possibly

(3) Really it is n = d - 2; otherwise two fibres of S should meet.

occurring in case *iii*) of Theorem 3.1 must satisfy the bare condition $d \ge 2 k + 1$ and that for every admissible d there exists an elliptic k-scroll of degree d. This latter fact will be proved by exhibiting an explicit projective model. We start with the following

PROPOSITION 5.1. Let $W_d \subset \mathbf{P}^{d-1}$ be an elliptic k-scroll $(k \ge 2)$ of degree d; then $d \ge 2 k + 1$.

Proof. This fact is trivial for k = 2. Let us continue the proof by induction on k. By absurd, let $W_d \subset \mathbf{P}^{d-1}$ be an elliptic k-scroll of degree

$$(5.1) d < 2 k + 1.$$

Consider a fibre F of W_d , a hyperplane Π containing F and the corresponding section

(5.2)
$$\Pi \cap \mathbf{W}_{d} = \mathbf{F} + \mathbf{S} \,.$$

By reasoning as in the proof of Theorem 4.1 (Step 2, case (c)) we conclude that S is an elliptic (k-1)-scroll of degree d-1. Consider the linearly normal (k-1)-scroll S' of degree d-1 embedded by the complete linear system of the hyperplane sections of S. By Theorem 4.2, S' is contained in \mathbf{P}^{d-2} ; so, by induction, $d-1 \ge 2(k-1) + 1$. Recalling (5.1) it can only be d = 2 k. In this case consider the (k-1)-scroll S in (5.2) and let L be a $\mathbf{P}^{d-k} = \mathbf{P}^k$ containing the fibre F. By applying repeatedly Remark 3.2 we see that $L \cap S$ contains an elliptic curve C, isomorphic to B, which must be a section of W_d (in the sense that C intersects each fibre in one point only). But as F is a hyperplane in L, Card $(C \cap F) = \deg C$, and $\deg C > I$, C being elliptic.

The bound given by Proposition 5.1 is as best as possible. In fact, for each $k \ge 2$, we are going to construct an elliptic k-scroll of degree d = 2 k + 1. This construction generalizes the one given in [5] for the quintic elliptic 2-scroll in **P**⁴.

In \mathbf{P}^{2k} consider k distinct 2-planes π_i $(i = 1, \dots, k)$ pairwise intersecting in a single common point p_0 and spanning the whole \mathbf{P}^{2k} . Consider also an elliptic curve B and k distinct points b_1, \dots, b_k of B such that each $b_i - b_j$ $(i, j = 1, \dots, k; i \neq j)$ is not of order three, i.e.

(5.3)
$$3(b_i - b_j) \neq 0$$
 $(i, j = 1, \dots, k; i \neq j).$

Let $\eta_i: B \to \pi_i \ (i = 1, \dots, k)$ be a closed immersion such that $\eta_i(b_i) = p_0$, $(i = 1, \dots, k)$, and denote by B_i the elliptic cubic curve $\eta_i(B)$. For each $b \in B$, $b \neq b_i$ consider the \mathbf{P}^{k-1}

(5.4)
$$\mathbf{F}_{b} = \langle \eta_{1}(b), \eta_{2}(b+b_{2}-b_{1}), \cdots, \eta_{k}(b+b_{k}-b_{1}) \rangle$$

spanned by the independent points $\eta_i (b + b_i - b_1) \in B_i (i = 1, \dots, k)$. Consider also the map

$$\Phi: \mathbf{B} \diagdown \{b_{\mathbf{i}}\} \to \operatorname{Grass}{(k-\mathbf{i}\ ,\ 2\ k)}$$

which takes values in the Grassmann manifold of the \mathbf{P}^{k-1} 's in \mathbf{P}^{2k} , defined by $\Phi(b) = \mathbf{F}_b$. Denote by $\overline{\Phi}$ its extension to B and put

(5.5)
$$\mathbf{F}_{b_1} = \overline{\Phi}(b_1).$$

LEMMA 5.1. If $b, b' \in B$ are two distinct points, then $F_b \cap F_{b'} = \emptyset$.

Proof. i) Suppose $b, b' \in \mathbb{B} \setminus \{b_1\}$. Put $p_i = \eta_i (b + b_i - b_1)$ and $p'_i = \eta_i (b' + b_i - b_1)$, $(i = 1, \dots, k)$. There results

$$\mathbf{F}_b = \langle p_1, \cdots, p_k \rangle$$
 and $\mathbf{F}_{b'} = \langle p'_1, \cdots, p'_k \rangle$.

By absurd, suppose $F_b \cap F_{b'} \neq \emptyset$; there follows

(5.6)
$$\dim \langle \mathbf{F}_{b}, \mathbf{F}_{b'} \rangle \leq 2 \ k - 2 \ .$$

Let l_i be the line $\langle p_i, p'_i \rangle$ and suppose such lines are pairwise skew. The linear span $S_{1,2} = \langle l_1, l_2 \rangle$ has dimension 3. Moreover $S_{1,2} \subset \langle \pi_1, \pi_2 \rangle$; so $S_{1,2} \cap l_3$, which is contained in $\langle \pi_1, \pi_2 \rangle \cap \pi_3 = \{p_0\}$, is either empty or reduced to p_0 . But the latter case can not happen and so

$$(5.7) S_{1,2} \cap l_3 = \emptyset .$$

In fact, if $S_{1,2} \cap l_3 = \{p_0\}$, then there were two lines l_3 and l_1 (or l_2) through p_0 , contradicting our assumption; to see this it is sufficient to prove that if $S_{1,2} \ni p_0$ then l_1 (or l_2) itself contains p_0 . In fact, as dim $S_{1,2} = 3$, $S_{1,2}$ cannot contain $\pi_1 \cup \pi_2$. So it cuts out on one of them ⁽⁴⁾, suppose π_1 , the line l_1 . But l_1 intersects the cubic curve B_1 in p_1 , p_1' and in a further point which must be p_0 , as $p_0 \in S_{1,2}$; hence $p_0 \in l_1$. Thus (5.7) is true and then $S_{1,2.3} = (S_{1,2}, l_3) = \langle l_1, l_2, l_3 \rangle$ has dimension 5. By repeating the same argument we conclude

(5.8)
$$\dim \langle l_1, l_2, \cdots, l_k \rangle = 2k - 1.$$

As $\langle F_b, F_{b'} \rangle = \langle l_1, \dots, l_k \rangle$, (5.8) contradicts (5.6). Thus the lines l_i cannot be pairwise skew. Suppose $l_i \cap l_j \neq \emptyset$; it must be $l_i \cap l_j = \{p_0\}$, and so the triple p_0, p_i, p'_i (respectively p_0, p_j, p'_j) is collinear on B_i (respectively on B_j). This means that the pair $b + b_i - b_1, b' + b_i - b_1$ must belong to the

(4) It could be seen (cf. the following part of this proof) that if $p_0 \in S_{1,2}$ and $S_{1,2} \supset \pi_1$, then $S_{1,2} \supset \pi_2$.

 g_2^1 defined by b_i on B and that the pair $b + b_j - b_1$, $b' + b_j - b_1$ must belong to the g_2^1 defined by b_j on B. Therefore it must be

$$b + b_i - b_1 + b' + b_i - b_1 + b_i = 0$$
, $b + b_j - b_1 + b' + b_j - b_1 + b_j = 0$.

But such relations cannot hold together by the assumption (5.3).

ii) Suppose $b' = b_1$. Assuming, by absurd, $F_b \cap F_{b'} \neq \emptyset$, reasoning similarly to the case *i*) and taking into account (5.5), one sees that the relations

$$b + b_i - b_1 + 2 b_i = 0$$
, $b + b_j - b_1 + 2 b_j = 0$

must hold together for some i and j $(i \neq j)$. Again this contradicts (5.3).

Now put

(5.9)
$$W = \bigcup_{b \in B} F_b;$$

there holds the following

PROPOSITION 5.2. W is an elliptic k-scroll over B embedded in \mathbf{P}^{2k} and of degree d = 2 k + 1.

Proof. By construction and Lemma 5.1 it follows immediately that (5.9) defines an elliptic k-scroll (over B) $W \subset \mathbf{P}^{2k}$; we prove by induction that it has degree $d = 2 \ k + 1$. For k = 2, W is the quintic elliptic 2-scroll in \mathbf{P}^4 (cf. [5], Prop. 5.1). Otherwise consider a hyperplane $\Pi \subset \mathbf{P}^{2k}$ containing the planes π_1, \dots, π_{k-1} . The hyperplane Π cuts out on the cubic curve B_k the point p_0 and two other points p_1 and p_2 . Hence $W \cap \Pi$ is constituted by the two fibres of W through p_1 and p_2 and by the (k - 1)-scroll S generated by the cubic curves B_1, \dots, B_{k-1} (in the same way as W is generated). So deg $W = 2 + \deg S$, and by induction on S we conclude.

The previous construction can be generalized and gives a model of an elliptic k-scroll of degree d for each $d \ge 2 k + 1$. Replace the 2-planes π_i $(i = 1, \dots, k)$ by linear spaces L_i of dimensions $r_i (r_i \ge 2)$ contained in \mathbf{P}^r $(r = \Sigma r_i)$, pairwise intersecting in a single common point p_0 and generating the whole \mathbf{P}^r . Replace the cubic curves B_i by elliptic curves of degree $r_i + 1$ isomorphic to B via closed immersions η_i . Define the (k - 1)-linear space F_b as in (5.4). Lemma 5.1 continues to hold and so a formula analogous to (5.9) defines a variety W which is easily seen to be an elliptic k-scroll over B of degree

$$d = \sum_{i=1}^{n} r_i + 1 = r + 1$$
 contained in **P**^r

References

- G. CASTELNUOVO (1894) Sulle superficie algebriche le cui sezioni piane sono curve ellittiche. « Rend. Accad. Naz. Lincei » (5) 3, 229-232.
- [2] F. ENRIQUES (1894) Sui sistemi lineari di superficie algebriche le cui intersezioni variabili sono curve ellittiche. « Rend. Accad. Naz. Lincei » (5) 3, 481-487.
- [3] F. ENRIQUES (1895) Sui sistemi lineari di superficie algebriche ad intersezioni variabili iperellittiche. «Math. Ann.» 46, 179–199.
- [4] A. LANTERI, M. PALLESCHI (1980) Algebraic varieties with elliptic curve sections and k-dimensional elliptic scrolls. «Quad. Ist. Mat. "F. Enriques" », Milano.
- [5] A. LANTERI, M. PALLESCHI (1978) Osservazioni sulla rigata geometrica ellittica di P⁴.
 «Istituto Lombardo (Rend. Sc.)» A 112, 223-233.
- [6] A. LANTERI, M. PALLESCHI (1979) Sulle rigate ellittiche. «Rend. Accad. Naz. Lincei»
 (8) 67, 1-2, 87-94.
- [7] L. ROTH (1955) Algebraic threefolds with special regard to problems of rationality. Springer. Berlin-Gottingen-Heidelberg.
- [8] G. SCORZA (1908) Le varietà a curve sezioni ellittiche. «Ann. di Mat.» (3) 15, 217-273.
- [9] G. SCORZA (1908) Le varietà a curve sezioni ellittiche. « Rend. Accad. Naz. Lincei » (5) 17, 10-11.