ANTONIO LANTERI, MARINO PALLESCHI

On k-dimensional elliptic scrolls

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1980_8_68_5_407_0>

L’utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l’utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.
Geometria algebrica. — On k-dimensional elliptic scrolls (*)

Nota di Antonio Lanteri e Marino Palleschi (**), presentata (***) dal Corrisp. E. Marchionna.

RIASSUNTO. — Le varietà algebriche proiettive complesse, non singolari, di dimensione \(k \geq 3 \) (grado \(d > 3 \)), a curva sezione ellittica, o sono razionali o sono fasci ellittici di spazi lineari.

Le varietà del primo tipo sono state studiate e classificate da Enriques (cfr. [2], [3]) e Scorza (cfr. [8]); alle varietà del secondo tipo è dedicata la presente Nota.

Si illustrano alcune proprietà delle varietà fibrate in spazi lineari su di una curva ellittica, e si studiano i loro modelli linearmente normali \(W \). Indicati con \(d \) e \(k \) il grado e la dimensione di una siffatta \(W \) e con \(n \) la dimensione del minimo spazio di appartenenza, si dimostra che \(d \geq 2k + 1 \), \(d = n - 1 \). Infine, assegnata la curva ellittica base, si costruisce un modello esplicito di una \(W \) del tipo considerato per una qualunque dimensione \(k \) e per un qualunque grado \(d \geq 2k + 1 \).

1. — This paper is concerned with \(k \)-dimensional projective irreducible and complex algebraic varieties with elliptic curve sections with special regard to \(k \)-dimensional elliptic scrolls.

The \(k \)-dimensional varieties \(W \subset \mathbb{P}^n \) with elliptic curve sections were studied by Castelnuovo (cf. [1]) for \(k = 2 \), Enriques (cf. [2], [3]) for \(k = 3 \) and Scorza (cf. [8], [9]) for \(k \geq 3 \). Substantially they show that such varieties (but cones and cubic hypersurfaces) are either elliptic pencils of \(\mathbb{P}^{k-1} \)'s or rational varieties.

The rational case is deeply analyzed in the previously quoted works by Enriques and Scorza (see also [7], pp. 59-60).

The present paper is devoted to the study of the elliptic case (not developed in the classical works).

Specifically here we consider an irreducible smooth \(k \)-dimensional \((k \geq 3) \) complex algebraic variety \(W \subset \mathbb{P}^n \) with elliptic curve sections. In sec. 3 we notice that if \(W \) is neither a rational variety nor a cubic hypersurface, then it is an elliptic \(k \)-scroll. In sec. 4 we show that the linearly normal models of such \(W \)'s are varieties of degree \(d \) in \(\mathbb{P}^{d-1} \) (non-hyperplane). We complete this result by proving (Theorem 4.2) that a \(k \)-dimensional \((k \geq 2) \) linearly normal variety \(W_d \subset \mathbb{P}^n \) of degree \(d \) with elliptic curve sections is an elliptic

(*) Lavoro eseguito nell’ambito dell’attività del G.N.S.A.G.A. del C.N.R.
(**) Istituto matematico « F. Enriques » – Via C. Saldini, 50 – Milano.
(***) Nella seduta del 10 maggio 1980.
In sec. 5 we prove that an elliptic \(k \)-scroll \((k \geq 2) \) \(W_d \subset \mathbb{P}^{d-1} \) has degree \(d \geq 2k + 1 \), and we show that for every admissible \(d \) there exists an elliptic \(k \)-scroll of degree \(d \), by constructing an explicit model of it.

2. From now on, the word variety will always mean irreducible complex projective algebraic variety. Such a variety of dimension \(k = 1 \) or \(k = 2 \) will be called curve or surface respectively.

Let \(V \) be a smooth variety of any dimension \(k \), and \(|D| \) the complete linear system associated to a divisor \(D \) on \(V \). We shall denote by \(\mathcal{O}_V \) the structural sheaf of \(V \); by \(\mathcal{O}_V(D) \) the invertible sheaf associated to \(D \); by \(h^q(\mathcal{O}_V(D)) = h^q(D) \) the complex dimension of the \(q \)-th cohomology vector space \(H^q(V, \mathcal{O}_V(D)) = H^q(\mathcal{O}_V(D)) \). In the case \(k \geq 2 \) consider an irreducible and smooth hypersurface \(S \) on \(V \); it is known that there exists a divisor \(D' \) on \(V \), linearly equivalent to \(D \) (briefly \(D' \equiv D \)) which does not contain \(S \) as a component and is transversal to \(S \). By \(D \cdot S \) we denote the divisor on \(S \) (defined mod linear equivalence) which \(D' \) cuts out on \(S \). For \(k = 2 \) the symbol \((D \cdot C) \) represents the intersection index of the divisors \(D \) and \(C \) on the surface \(V \); if \(D \equiv C \), we also write \((D - C) = (C^2) \).

Now let \(B \) be a smooth curve and \(\mathbb{P}^r \) the \(r \)-dimensional complex projective space. From now on, by saying that a variety \(V \) is contained in \(\mathbb{P}^r \) (or by writing \(V \subset \mathbb{P}^r \)) we mean that \(V \) is in \(\mathbb{P}^r \) but not in any hyperplane of its.

A \(k \)-dimensional scroll over \(B \) (briefly a \(k \)-scroll) is a smooth variety \(V \) embedded in some \(\mathbb{P}^r \) endowed with a morphism \(\pi: V \rightarrow B \) such that \(F_b = \pi^{-1}(b) \) is a \(\mathbb{P}^{k-1} \), for each \(b \in B \). If \(B \) is an elliptic curve, such a \(V \) is said an elliptic \(k \)-scroll.

Finally we introduce some other notations occurring in the sequel. On a \(k \)-dimensional smooth variety \(V \) consider a very ample divisor \(H \). Obviously it is always possible to choose \(i \ (i = 1, \ldots, k - 1) \) smooth irreducible hypersurfaces \(H_1, H_2, \ldots, H_i \), belonging to \(|H| \), pairwise transversal and such that the \((k - i)\)-dimensional algebraic characteristic cycle \(H_{k-i} = H_1 \cap \cdots \cap H_i \) (defined by intersecting these \(i \) hypersurfaces) is irreducible and smooth. We denote also by \(E \) the characteristic cycle \(H_1 \).

By means of well-known facts holding for complex smooth varieties, some standard cohomological calculations (see [4], sec. 2) give

Remark 2.1. If \(k \geq 3 \) and \(h^1(\mathcal{O}_{H_k}) = 0 \), then \(h^0(\mathcal{O}_V(H)) = h^0(\mathcal{O}_{H_2}(E)) + k - 2 \).

Remark 2.2. Suppose \(k \geq 3 \) and \(h^1(\mathcal{O}_{H_k}) = 1 \), \(h^2(\mathcal{O}_{H_k}) = h^1(\mathcal{O}_{H_2}(E)) = 0 \). Then \(h^0(\mathcal{O}_V(H)) = h^0(\mathcal{O}_{H_2}(E)) + s \), where \(0 \leq s \leq k - 2 \).

(1) Remark that a \(k \)-scroll is a model of the projectivized \(\text{Proj}(\mathcal{E}) \) of a vector bundle \(\mathcal{E} \) of rank \(k \) over \(B \).
3. In [8] G. Scorza studied the k-dimensional varieties $W \subset \mathbf{P}^n$ with elliptic curve sections. If such a variety W is not a cone and if $\deg W > 3$, then he shows that W must be either a rational variety or an elliptic pencil of \mathbf{P}^{k-1}'s. Now, recalling the notations introduced in sec. 2 and denoting by Φ_H the closed immersion defined by $|H|$, this result can be restated as follows.

Theorem 3.1. (Enriques-Scorza). Let V be a k-dimensional smooth variety $(k \geq 3)$ endowed with a very ample linear system $|H|$ the general characteristic 1-cycle E of which is an elliptic curve. Then only the following cases can occur:

1. V is isomorphic, via Φ_H, to a smooth cubic hypersurface of \mathbf{P}^{k+1};
2. V is a rational variety;
3. V is isomorphic, via Φ_H, to an elliptic k-scroll over E.

Another proof, different from the original one, can be found in [4].

Remark 3.1. If E is an elliptic curve, the 2-dimensional characteristic cycle H^2 is either a rational surface or it is isomorphic to an elliptic 2-scroll (Castelnuovo [1]; for a different proof working over any algebraically closed field see also [6], Theorem 3.1). From the proof of Theorem 3.1 in [4], one sees that the former case corresponds to $i)$ and $ii)$, whilst the latter case corresponds to $iii)$. In the former case Remark 2.1 shows that the linearly normal models $W_d = \Phi_H(V)$ of the V's occurring in case $ii)$ are varieties of degree $d = (E^2)$ in \mathbf{P}^{d+k-2}.

For the sequel we need also the following

Remark 3.2. Let $W \subset \mathbf{P}^n$ be a k-scroll $(k \geq 3)$ over a (smooth) curve B and let H' be a hyperplane section of its. Then there happens: either $i)$ H' is a $(k-1)$-scroll over B, or $ii)$ $H' = F_{b_1} + \cdots + F_{b_p} + S$ where F_{b_i} is a fibre of W and S is a $(k-1)$-scroll over B (2), (cf. [4]).

4. Theorem 3.1 is particularly meaningful when H is a general hyperplane section of a smooth k-dimensional variety $W \subset \mathbf{P}^n$. In this case it says that a smooth variety $W_d \subset \mathbf{P}^n$ of degree $d > 3$ with elliptic curve sections is either a rational variety or an elliptic k-scroll. The rational case (case $ii)$ of Theorem 3.1) has been studied, for $k = 3$, by Enriques in [2] (see also [3]). He proved that the linearly normal models of the rational threefolds with elliptic curve sections are varieties $W_d \subset \mathbf{P}^{d+1}$ of degree d ($4 \leq d \leq 8$) representable on \mathbf{P}^3 by a linear system of quadric or cubic surfaces. For $k > 3$, the linearly normal models in the rational case have been studied by Scorza (cf. [8]). They are, for $k = 4$, a $W_5 \subset \mathbf{P}^5$, and a $W_6 \subset \mathbf{P}^6$; for $k = 5$, a

(2) In a sense this Remark has a converse (see [4], Prop. 3.1); it could also be easily proven (cf. the following Theorem 5.1) that $1 \leq r \leq \deg W - 2k + 1$.

$W_6 \subset \mathbb{P}^6$; for $k = 6$ the Grassmannian $W_6 \subset \mathbb{P}^6$, and, for each $k \geq 3$, there is always the complete intersection $W_4 \subset \mathbb{P}^{k-2}$ of two quadrics.

This sec. is meanly devoted to the analysis of elliptic k-scrolls, i.e. we are dealing with the case iii) of Theorem 3.1.

Now consider a k-dimensional smooth variety $V (k \geq 2)$, a complete very ample linear system $|H|$ on V, and its characteristic cycles H_2 and $H_1 = E$. From now on suppose E is an elliptic curve; so we know (cf. [6]) H_2 is either a rational surface or an elliptic geometrically ruled surface (to wit it is isomorphic to an elliptic 2-scroll). From now on suppose also we are in the latter case; so, if $k \geq 3$ all we said in Remark 3.1 implies that the variety $W_d = \Phi_{H}(V)$ is a linearly normal elliptic k-scroll of degree $d = (E^2)$; note that this conclusion holds also for $k = 2$ (cf. [6]). It is known (cf. [6], p. 91) that

$$h^0(\mathcal{O}_{H_2}(E)) = d$$

and $h^1(\mathcal{O}_{H_2}(E)) = 0$; moreover, as H_2 is supposed to be an elliptic ruled surface if $k \geq 3$, we can apply Remark 2.2 and conclude that

$$h^0(\mathcal{O}_{V}(H)) = d + s,$$

where $0 \leq s \leq k - 2$. So, a priori, W_d is a linearly normal k-scroll of degree d in \mathbb{P}^{d+s-1}. Really, for each $k \geq 2$ (if $k = 2$ see (4.1)), we can prove the following

Theorem 4.1. W_d is contained in \mathbb{P}^{d-1} (i.e. $s = 0$).

Proof. In case $k = 2$ our thesis follows immediately from all we said; so we prove the theorem by induction on k.

Step 1. There results $s \leq 1$. By Remark 3.2 the general hyperplane section of $W_d \subset \mathbb{P}^{d+s-1}$ is an elliptic $(k - 1)$-scroll $H_d \subset \mathbb{P}^{d+k-2}$ of degree d. Were H_d linearly normal, the dimension of the corresponding embedding space should be $n = d - 1$, by induction; if not, it would be $n < d - 1$. So we must have $n = d + s - 2 \leq d - 1$.

Step 2. There results $s = 0$. By absurd suppose $s = 1$, i.e. $W_d \subset \mathbb{P}^d$. We are proving this fact can not occur by analyzing the following three cases:

$$(a)\quad d < 2k - 1; \quad (b)\quad d \geq 2k; \quad (c)\quad d = 2k - 1.$$

In case (a) the thesis is trivial; in fact two distinct fibres $F_1 = \mathbb{P}^{k-1}$ and $F_2 = \mathbb{P}^{k-1}$ of W_d generate a \mathbb{P}^{k-1}.

In case (b) the linear span $\langle F_a, F_b \rangle$ of two fibres F_a and F_b of W_d has codimension ≥ 1; so there exists a hyperplane $\Pi \supset \langle F_a, F_b \rangle$. In view of Remark 3.2, we have

$$\Pi \cap W_d = F_a + F_b + F_{a_1} + \cdots + F_{a_t} + S,$$
where F_{a_1}, \ldots, F_{a_i} are fibres of W_d and S is an elliptic $(k - 1)$-scroll of degree $d - 2 - i$. Suppose S is contained in \mathbb{P}^n (and not in any hyperplane of its). By induction

$$n \leq d - 2 - i - 1.$$

(4.3)

Denote by $L = \langle S, F_{a_1}, \ldots, F_{a_i}, F_a \rangle$ the linear span of S and $F_{a_1}, \ldots, F_{a_i}, F_a$. Remark that S cuts out on each fibre F of W_d the \mathbb{P}^{k-2} which is the corresponding fibre of S; there follows that $\dim L \leq n + i + 1$; recalling (4.3), $\dim L \leq d - 2$. So there is a pencil $\{\Pi_t \in \mathbb{P}^1\}$ of hyperplanes $\Pi_t \subset \mathbb{P}^d$ through L, at least. Such a Π_t intersects W_d along

$$S + F_{a_1} + \cdots + F_{a_i} + F_a + R,$$

where R is nothing but a fibre of W_d, by Remark 3.2. So it is defined a non-constant morphism from \mathbb{P}^1 to the elliptic base B of W_d. This is absurd.

In case (c), in order to exclude the varieties $W_d \subset \mathbb{P}^d$ ($d = 2k - 1$) consider a hyperplane Π containing a fibre F of W_d and the corresponding section $\Pi \cap W_d = F + S$; by Remark 3.2, S is either a $(k - 1)$-scroll or a $(k - 1)$-scroll plus some fibres F_{a_1}, \ldots, F_{a_i}. The latter case does not occur: otherwise the fibres F_{a_1} and F, contained in $\Pi = \mathbb{P}^{k-2}$, should meet. Suppose S is contained in \mathbb{P}^n (and not in any hyperplane of its). As S has degree $d - 1$, by induction we have $n \leq d - 2$ (3); hence there exists a pencil $\{\Pi_t \in \mathbb{P}^1\}$ of hyperplanes $\Pi_t \subset \mathbb{P}^d$ through the \mathbb{P}^n containing S. Such a Π_t intersects W_d along $S + R$, where, by Remark 3.2, R is nothing but a fibre of W_d. Thus we can conclude, as in case (b).

There follows immediately

Remark 4.1. Let W be an elliptic k-scroll and H' a general hyperplane section of its. Then H' and each other general characteristic cycle of $|H'|$ is not linearly normal.

Let $W_d \subset \mathbb{P}^n$ be a smooth k-dimensional linearly normal variety ($k \geq 2$) of degree d with elliptic curve sections. If W_d is a k-scroll, Theorem 4.1 shows that $n = d - 1$. On the other side if $n = d - 1$ and $k \geq 3$, W_d can be neither a cubic hypersurface nor a rational variety (see Remark 3.1). Hence, by Theorem 3.1, W_d is an elliptic k-scroll. The same conclusion holds if $k = 2$ (cf. [6] Corollary 3.1). So we can state

Theorem 4.2. Let $W_d \subset \mathbb{P}^n$ be a k-dimensional linearly normal smooth variety ($k \geq 2$) of degree d with elliptic curve sections. Then W_d is an elliptic k-scroll if and only if $n = d - 1$.

5. - As we already said the number of possible varieties occurring in case ii) of Theorem 3.1 decreases as the dimension k of the variety increases. On the contrary here we show that the degree d of the varieties possibly

(3) Really it is $n = d - 2$; otherwise two fibres of S should meet.
occurring in case \(iii \) of Theorem 3.1 must satisfy the bare condition \(d \geq 2k + 1 \) and that for every admissible \(d \) there exists an elliptic \(k \)-scroll of degree \(d \). This latter fact will be proved by exhibiting an explicit projective model. We start with the following

Proposition 5.1. Let \(W_d \subset \mathbb{P}^{d-1} \) be an elliptic \(k \)-scroll \((k \geq 2) \) of degree \(d \), then \(d \geq 2k + 1 \).

Proof. This fact is trivial for \(k = 2 \). Let us continue the proof by induction on \(k \). By absurd, let \(W_d \subset \mathbb{P}^{d-1} \) be an elliptic \(k \)-scroll of degree

\[
(5.1) \quad d < 2k + 1.
\]

Consider a fibre \(F \) of \(W_d \), a hyperplane \(\Pi \) containing \(F \) and the corresponding section

\[
(5.2) \quad \Pi \cap W_d = F + S.
\]

By reasoning as in the proof of Theorem 4.1 (Step 2, case (c)) we conclude that \(S \) is an elliptic \((k-1)\)-scroll of degree \(d-1 \). Consider the linearly normal \((k-1)\)-scroll \(S' \) of degree \(d-1 \) embedded by the complete linear system of the hyperplane sections of \(S \). By Theorem 4.2, \(S' \) is contained in \(\mathbb{P}^{d-2} \); so, by induction, \(d-1 \geq 2(k-1)+1 \). Recalling (5.1) it can only be \(d = 2k \). In this case consider the \((k-1)\)-scroll \(S \) in (5.2) and let \(L \) be a \(\mathbb{P}^{d-k} = \mathbb{P}^k \) containing the fibre \(F \). By applying repeatedly Remark 3.2 we see that \(L \cap S \) contains an elliptic curve \(C \), isomorphic to \(B \), which must be a section of \(W_d \) (in the sense that \(C \) intersects each fibre in one point only). But as \(F \) is a hyperplane in \(L \), \(\text{Card} (C \cap F) = \deg C \), and \(\deg C > 1 \), \(C \) being elliptic.

The bound given by Proposition 5.1 is as best as possible. In fact, for each \(k \geq 2 \), we are going to construct an elliptic \(k \)-scroll of degree \(d = 2k + 1 \). This construction generalizes the one given in [5] for the quintic elliptic \(2 \)-scroll in \(\mathbb{P}^4 \).

In \(\mathbb{P}^{2k} \) consider \(k \) distinct 2-planes \(\pi_i \) \((i = 1, \cdots, k) \) pairwise intersecting in a single common point \(p_0 \) and spanning the whole \(\mathbb{P}^{2k} \). Consider also an elliptic curve \(B \) and \(k \) distinct points \(b_1, \cdots, b_k \) of \(B \) such that each \(b_i - b_j \) \((i, j = 1, \cdots, k; i \neq j)\) is not of order three, i.e.

\[
(5.3) \quad 3(b_i - b_j) \neq 0 \quad (i, j = 1, \cdots, k; i \neq j).
\]

Let \(\eta_i : B \to \pi_i \) \((i = 1, \cdots, k) \) be a closed immersion such that \(\eta_i(b_i) = p_0 \), \((i = 1, \cdots, k)\), and denote by \(B_i \) the elliptic cubic curve \(\eta_i(B) \). For each \(b \in B \), \(b \neq b_i \) consider the \(\mathbb{P}^{k-1} \)

\[
(5.4) \quad F_b = \langle \eta_1(b), \eta_2(b + b_2 - b_1), \cdots, \eta_k(b + b_k - b_1) \rangle
\]
spanned by the independent points \(\eta_i (b + b_i - b_1) \in B_i \ (i = 1, \cdots, k) \). Consider also the map

\[\Phi : B \setminus \{b_i\} \to \text{Grass} (k - 1, 2k) \]

which takes values in the Grassmann manifold of the \(\mathbb{P}^{k-1} \)'s in \(\mathbb{P}^{2k} \), defined by \(\Phi (b) = F_b \). Denote by \(\Phi \) its extension to \(B \) and put

\[
(5.5) \quad F_{b_i} = \Phi (b_i).
\]

Lemma 5.1. If \(b, b' \in B \) are two distinct points, then \(F_b \cap F_{b'} = \emptyset \).

Proof. i) Suppose \(b, b' \in B \setminus \{b_i\} \). Put \(p_i = \eta_i (b + b_i - b_1) \) and \(p'_i = \eta_i (b' + b_i - b_1), \ (i = 1, \cdots, k) \). There results

\[F_b = \langle p_1, \cdots, p_k \rangle \quad \text{and} \quad F_{b'} = \langle p'_1, \cdots, p'_k \rangle. \]

By absurd, suppose \(F_b \cap F_{b'} \neq \emptyset \); there follows

\[
(5.6) \quad \dim \langle F_b, F_{b'} \rangle \leq 2k - 2.
\]

Let \(l_i \) be the line \(\langle p_i, p'_i \rangle \) and suppose such lines are pairwise skew. The linear span \(S_{1,2} = \langle l_1, l_2 \rangle \) has dimension 3. Moreover \(S_{1,2} \subset \langle \pi_1, \pi_2 \rangle \); so \(S_{1,2} \cap l_3 \), which is contained in \(\langle \pi_1, \pi_2 \rangle \cap \pi_3 = \{ p_0 \} \), is either empty or reduced to \(p_0 \). But the latter case cannot happen and so

\[
(5.7) \quad S_{1,2} \cap l_3 = \emptyset.
\]

In fact, if \(S_{1,2} \cap l_3 = \{ p_0 \} \), then there were two lines \(l_3 \) and \(l_4 \) (or \(l_5 \)) through \(p_0 \), contradicting our assumption; to see this it is sufficient to prove that if \(S_{1,2} \ncontaining \(\pi_1 \cup \pi_2 \). So it cuts out on one of them (4), suppose \(\pi_1 \), the line \(l_4 \). But \(l_4 \) intersects the cubic curve \(B_i \) in \(p_1, p'_i \) and in a further point which must be \(p_0 \), as \(p_0 \in S_{1,2} \); hence \(p_0 \in l_4 \). Thus \((5.7) \) is true and then \(S_{1,2,3} = \langle S_{1,2}, l_3 \rangle = \langle l_1, l_2, l_3 \rangle \) has dimension 5. By repeating the same argument we conclude

\[
(5.8) \quad \dim \langle l_1, l_2, \cdots, l_k \rangle = 2k - 1.
\]

As \(\langle F_b, F_{b'} \rangle = \langle l_1, \cdots, l_k \rangle \), (5.8) contradicts (5.6). Thus the lines \(l_i \) cannot be pairwise skew. Suppose \(l_i \cap l_j \neq \emptyset \); it must be \(l_i \cap l_j = \{ p_0 \} \), and so the triple \(p_0, p_i, p'_i \) (respectively \(p_0, p_j, p'_j \)) is collinear on \(B_i \) (respectively on \(B_j \)). This means that the pair \(b + b_i - b_1, b' + b_i - b_1 \) must belong to the

\((4) \) It could be seen (cf. the following part of this proof) that if \(p_0 \in S_{1,2} \) and \(S_{1,2} \ncontaining \(\pi_1 \), then \(S_{1,2} \ncontaining \(\pi_2 \).
g^i_2 defined by b_i on B and that the pair $b + b_j - b_i, b' + b_j - b_i$ must belong to the g^i_1 defined by b_j on B. Therefore it must be

$$b + b_i - b_i + b' + b_i - b_i + b_i = 0, b + b_j - b_i + b' + b_j - b_i + b_j = 0.$$

But such relations cannot hold together by the assumption (5.3).

ii) Suppose $b' = b_i$. Assuming, by absurd, $F_b \cap F_{b'} \neq \emptyset$, reasoning similarly to the case i) and taking into account (5.5), one sees that the relations

$$b + b_i - b_i + 2 b_i = 0, b + b_j - b_i + 2 b_j = 0$$

must hold together for some i and j $(i \neq j)$. Again this contradicts (5.3).

Now put

$$(5.9) \quad W = \bigcup_{b \in B} F_b;$$

there holds the following

PROPOSITION 5.2. W is an elliptic k-scroll over B embedded in P^{2k} and of degree $d = 2k + 1$.

Proof. By construction and Lemma 5.1 it follows immediately that (5.9) defines an elliptic k-scroll (over B) $W \subset P^{2k}$; we prove by induction that it has degree $d = 2k + 1$. For $k = 2$, W is the quintic elliptic 2-scroll in P^4 (cf. [5], Prop. 5.1). Otherwise consider a hyperplane $H \subset P^{2k}$ containing the planes π_1, \ldots, π_{k-1}. The hyperplane H cuts out on the cubic curve B_k the point p_0 and two other points p_1 and p_2. Hence $W \cap H$ is constituted by the two fibres of W through p_1 and p_2 and by the $(k-1)$-scroll S generated by the cubic curves B_1, \ldots, B_{k-1} (in the same way as W is generated). So $\text{deg } W = 2 + \text{deg } S$, and by induction on S we conclude.

The previous construction can be generalized and gives a model of an elliptic k-scroll of degree d for each $d \geq 2k + 1$. Replace the 2-planes π_i ($i = 1, \ldots, k$) by linear spaces L_i of dimensions $r_i (r_i \geq 2)$ contained in P^r ($r = \sum r_i$), pairwise intersecting in a single common point p_0 and generating the whole P^r. Replace the cubic curves B_i by elliptic curves of degree $r_i + 1$ isomorphic to B via closed immersions γ_i. Define the $(k-1)$-linear space F_b as in (5.4). Lemma 5.1 continues to hold and so a formula analogous to (5.9) defines a variety W which is easily seen to be an elliptic k-scroll over B of degree $d = \sum_{i=1}^k r_i + 1 = r + 1$ contained in P^r.

REFERENCES