Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Antonio Lanteri, Marino Palleschi

On k-dimensional elliptic scrolls

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 68 (1980), n.5, p. 407-415.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1980_8_68_5_407_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> $\mathrm{http}: / / \mathrm{www}$. bdim.eu/

Geometria algebrica. - On k-dimensional elliptic scrolls (*). Nota di Antonio Lanteri e Marino Palleschi (**), presentata (**) dal Corrisp. E. Marchionna.

Abstract

RIASSUNTO. - Le varietà algebriche proiettive complesse, non singolari, di dimensione $k \geq 3$ (grado $d>3$), a curva sezione ellittica, o sono razionali o sono fasci ellittici di spazi lineari.

Le varietà del primo tipo sono state studiate e classificate da Enriques (cfr. [2], [3]) e Scorza (cfr. [8]); alle varietà del secondo tipo è dedicata la presente Nota.

Si illustrano alcune proprietà delle varietà fibrate in spazi lineari su di una curva ellittica, e si studiano i loro modelli linearmente normali W. Indicati con $d \mathrm{e} k$ il grado e la dimensione di una siffatta W e con n la dimensione del minimo spazio di appartenenza, si dimostra che $d \geq 2 k+\mathrm{I}, d=n-\mathrm{I}$. Infine, assegnata la curva ellittica base, si costruisce un modello esplicito di una W del tipo considerato per una qualunque dimensione k e per un qualunque grado $d \geq 2 k+\mathrm{I}$.

I. - This paper is concerned with k-dimensional projective irreducible and complex algebraic varieties with elliptic curve sections with special regard to k-dimensional elliptic scrolls.

The k-dimensional varieties $\mathrm{W} \subset \mathbf{P}^{n}$ with elliptic curve sections were studied by Castelnuovo (cf. [1]) for $k=2$, Enriques (cf. [2], [3]) for $k=3$ and Scorza (cf. [8], [9]) for $k \geq 3$. Substantially they show that such varieties (but cones and cubic hypersurfaces) are either elliptic pencils of \mathbf{P}^{k-1} 's or rational varieties.

The rational case is deeply analyzed in the previously quoted works by Enriques and Scorza (see also [7], pp. 59-60).

The present paper is devoted to the study of the elliptic case (not developed in the classical works).

Specifically here we consider an irreducible smooth k-dimensional ($k \geq 3$) complex algebraic variety $\mathrm{W} \subset \mathbf{P}^{n}$ with elliptic curve sections. In sec. 3 we notice that if W is neither a rational variety nor a cubic hypersurface, then it is an elliptic k-scroll. In sec. 4 we show that the linearly normal models of such W's are varieties of degree d in \mathbf{P}^{d-1} (non-hyperplane). We complete this result by proving (Theorem 4.2) that a k-dimensional ($k \geq 2$) linearly normal variety $\mathrm{W}_{d}^{\prime} \subset \mathbf{P}^{n}$ of degree d with elliptic curve sections is an elliptic

[^0]k-scroll if and only if $n=d$ - I. In sec. 5 we prove that an elliptic k-scroll ($k \geq 2$) $\mathrm{W}_{d} \subset \mathbf{P}^{d-1}$ has degree $d \geq 2 k+\mathrm{I}$, and we show that for every admissible d there exists an elliptic k-scroll of degree d, by constructing an explicit model of it.
2. - From now on, the word variety will always mean irreducible complex projective algebraic variety. Such a variety of dimension $k=\mathrm{I}$ or $k=2$ will be called curve or surface respectively.

Let V be a smooth variety of any dimension k, and $|\mathrm{D}|$ the complete linear system associated to a divisor D on V . We shall denote by \mathcal{O}_{V} the structural sheaf of V ; by $\mathcal{O}_{\mathrm{V}}(\mathrm{D})$ the invertible sheaf associated to D ; by $h^{q}\left(\mathcal{O}_{\mathrm{V}}(\mathrm{D})\right)=h^{q}(\mathrm{D})$ the complex dimension of the q-th cohomology vector space $\mathrm{H}^{q}\left(\mathrm{~V}, \mathcal{O}_{\mathrm{V}}(\mathrm{D})\right)=$ $=\mathrm{H}^{q}\left(\mathcal{O}_{\mathrm{V}}(\mathrm{D})\right)$. In the case $k \geq 2$ consider an irreducible and smooth hypersurface S on V ; it is known that there exists a divisor D^{\prime} on V , linearly equivalent to D (briefly $\mathrm{D}^{\prime} \equiv \mathrm{D}$) which does not contain S as a component and is transversal to S . By D.S we denote the divisor on S (defined mod linear equivalence) which D^{\prime} cuts out on S . For $k=2$ the symbol (D.C) represents the intersection index of the divisors D and C on the surface V ; if $\mathrm{D} \equiv \mathrm{C}$, we also write ($\mathrm{D} \cdot \mathrm{C}$) $=\left(\mathrm{C}^{2}\right)$.

Now let B be a smooth curve and \mathbf{P}^{r} the r-dimensional complex projective space. From now on, by saying that a variety V is contained in \mathbf{P}^{r} (or by writing $\mathrm{V} \subset \mathbf{P}^{r}$) we mean that V is in \mathbf{P}^{r} but not in any hyperplane of its.

A k-dimensional scroll over B (briefly a k-scroll) is a smooth variety V embedded in some \mathbf{P}^{r} endowed with a morphism $\pi: V \rightarrow B$ such that $\mathrm{F}_{b}=\pi^{-1}(b)$ is a \mathbf{P}^{k-1}, for each $b \in \mathrm{~B}^{(1)}$. If B is an elliptic curve, such a V is said an elliptic k-scroll.

Finally we introduce some other notations occurring in the sequel. On a k-dimensional smooth variety V consider a very ample divisor H . Obviously it is always possible to choose $i(i=\mathrm{I}, \cdots, k-\mathrm{I})$ smooth irreducible hypersurfaces $\mathrm{H}^{1}, \mathrm{H}^{2}, \cdots, \mathrm{H}^{i}$, belonging to $|\mathrm{H}|$, pairwise transversal and such that the ($k-i$)-dimensional algebraic characteristic cycle $H_{k-i}=H^{1} \cap$ $\cap \mathrm{H}^{2} \cap \cdots \cap \mathrm{H}^{i}$ (defined by intersecting these i hypersurfaces) is irreducible and smooth. We denote also by E the characteristic cycle H_{1}.

By means of well-known facts holding for complex smooth varieties, some standard cohomological calculations (see [4], sec. 2) give

Remark 2.I. If $k \geq 3$ and $h^{1}\left(\mathcal{O}_{\mathrm{H}_{2}}\right)=0$, then $h^{0}\left(\mathcal{O}_{\mathrm{V}}(\mathrm{H})\right)=h^{0}\left(\mathcal{O}_{\mathrm{H}_{2}}(\mathrm{E})\right)+$ $+k-2$.

Remark 2.2. Suppose $k \geq 3$ and $h^{1}\left(\mathcal{O}_{\mathrm{H}_{2}}\right)=\mathrm{I}, h^{2}\left(\mathcal{O}_{\mathrm{H}_{2}}\right)=h^{1}\left(\mathcal{O}_{\mathrm{H}_{2}}(\mathrm{E})\right)=0$. Then $h^{0}\left(\mathcal{O}_{\mathrm{V}}(\mathrm{H})\right)=h^{0}\left(\mathcal{O}_{\mathrm{H}_{2}}(\mathrm{E})\right)+s$, where $0 \leq s \leq k-2$.
(I) Remark that a k-scroll is a model of the projectivized $\operatorname{Proj}(\mathscr{E})$ of a vector bundle \mathscr{E} of rank k over B.
3. - In [8] G. Scorza studied the k-dimensional varieties $\mathrm{W} \subset \mathbf{P}^{n}$ with elliptic curve sections. If such a variety W is not a cone and if $\operatorname{deg} W>3$, then he shows that W must be either a rational variety or an elliptic pencil of \mathbf{P}^{k-1} 's. Now, recalling the notations introduced in sec. 2 and denoting by Φ_{H} the closed immersion defined by $|\mathrm{H}|$, this result can be restated as follows.

ThEOREM 3.1. (Enriques-Scorza). - Let V be a k-dimensional smooth variety $(k \geq 3)$ endowed with a very ample linear system $|\mathrm{H}|$ the general characteristic 1-cycle E of which is an elliptic curve. Then only the following cases can occur:
i) V is isomorphic, wia Φ_{H}, to a smooth cubic hypersurface of \mathbf{P}^{k+1};
ii) V is a rational variety;
iii) V is isomorphic, via Φ_{H}, to an elliptic k-scroll over E .

Another proof, different from the original one, can be found in [4].
Remark 3.I. If E is an elliptic curve, the 2-dimensional characteristic cycle H_{2} is either a rational surface or it is isomorphic to an elliptic 2-scroll (Castelnuovo [r]; for a different proof working over any algebraically closed field see also [6], Theorem 3.1). From the proof of Theorem 3.I in [4], one sees that the former case corresponds to i) and $i i$), whilst the latter case corresponds to $i i i$). In the former case Remark 2.I shows that the linearly normal models $\mathrm{W}_{d}=\Phi_{\mathrm{H}}(\mathrm{V})$ of the V^{\prime} s occurring in case $\left.i i\right)$ are varieties of degree $d=\left(\mathrm{E}^{2}\right)$ in \mathbf{P}^{d+k-2}.

For the sequel we need also the following
Remark 3.2. Let $\mathrm{W} \subset \mathbf{P}^{n}$ be a k -scroll $(k \geq 3)$ over a (smooth) curve B and let H^{\prime} be a hyperplane section of its. Then there happens: either i) H^{\prime} is a $(k-\mathrm{I})$-scroll over B , or $\left.i i\right) \mathrm{H}^{\prime}=\mathrm{F}_{b_{1}}+\cdots+\mathrm{F}_{b_{r}}+\mathrm{S}$ where $\mathrm{F}_{b_{i}}$ is a fibre of W and S is a ($k-\mathrm{I}$)-scroll over $\mathrm{B}^{(2)}$, (cf. [4]).
4. - Theorem 3.I is particularly meaningful when H is a general hyperplane section of a smooth k-dimensional variety $\mathrm{W} \subset \mathbf{P}^{n}$. In this case it says that a smooth variety $\mathrm{W}_{d} \subset \mathbf{P}^{n}$ of degree $d>3$ with elliptic curve stctions is either a rational variety or an elliptic k-scroll. The rational case (case ii) of Theorem 3.1) has been studied, for $k=3$, by Enriques in [2] (see also [3]). He proved that the linearly normal models of the rational threefolds with elliptic curve sections are varieties $\mathrm{W}_{d} \subset \mathbf{P}^{d+1}$ of degree $d(4 \leq d \leq 8)$ representable on \mathbf{P}^{3} by a linear system of quadric or cubic surfaces. For $k>3$, the linearly normal models in the rational case have been studied by Scorza (cf. [8]). They are, for $k=4, \mathrm{a} \mathrm{W}_{5} \subset \mathbf{P}^{7}$, and a $\mathrm{W}_{6} \subset \mathbf{P}^{\mathbf{3}}$; for $k=5$, a
(2) In a sense this Remark has a converse (see [4], Prop. 3.1); it could also be easily proven (cf. the following Theorem 5.I) that $\mathrm{I} \leq r \leq \operatorname{deg} \mathrm{W}-2 k+\mathrm{I}$.
$\mathrm{W}_{5} \subset \mathbf{P}^{\mathbf{8}}$; for $k=6$ the Grassmannian $\mathrm{W}_{5} \subset \mathbf{P}^{9}$, and, for each $k \geq 3$, there is always the complete intersection $\mathrm{W}_{4} \subset \mathbf{P}^{k+2}$ of two quadrics.

This sec. is meanly devoted to the analysis of elliptic k-scrolls, i.e. we are dealing with the case $i i i$) of Theorem 3.I.

Now consider a k-dimensional smooth variety $\mathrm{V}(k \geq 2)$, a complete very ample linear system $|\mathrm{H}|$ on V , and its characteristic cycles H_{2} and $\mathrm{H}_{1}=\mathrm{E}$. From now on suppose E is an elliptic curve; so we know (cf. [6]) H_{2} is either a rational surface or an elliptic geometrically ruled surface (to wit it is isomorphic to an elliptic 2 -scroll). From now on suppose also we are in the latter case; so, if $k \geq 3$ all we said in Remark 3.1 implies that the variety $\mathrm{W}_{d}=\Phi_{\mathrm{H}}(\mathrm{V})$ is a linearly normal elliptic k-scroll of degree $d=\left(\mathrm{E}^{2}\right)$; note that this conclusion holds also for $k=2$ (cf. [6]). It is known (cf. [6], p. 91) that

$$
\begin{equation*}
h^{0}\left(\mathcal{O}_{\mathrm{H}_{2}}(\mathrm{E})\right)=d \tag{4.I}
\end{equation*}
$$

and $h^{1}\left(\mathscr{O}_{\mathrm{H}_{2}}(\mathrm{E})\right)=0$; moreover, as H_{2} is supposed to be an elliptic ruled surface if $k \geq 3$, we can apply Remark 2.2 and conclude that

$$
\begin{equation*}
h^{0}\left(\mathcal{O}_{\mathrm{V}}(\mathrm{H})\right)=d+s \tag{4.2}
\end{equation*}
$$

where $0 \leq s \leq k-2$. So, a priori, W_{d} is a linearly normal k-scroll of degree d in \mathbf{P}^{d+s-1}. Really, for each $k \geq 2$ (if $k=2$ see (4.1)), we can prove the following

Theorem 4.i. W_{d} is contained in \mathbf{P}^{d-1} (i.e. $s=0$).
Proof. In case $k=2$ our thesis follows immediately from all we said; so we prove the theorem by induction on k.

Step I. There results $s \leq 1$. By Remark 3.2 the general hyperplane section of $\mathrm{W}_{d} \subset \mathbf{P}^{d+s-1}$ is an elliptic ($k-\mathrm{I}$)-scroll $\mathrm{H}_{d} \subset \mathbf{P}^{d+s-2}$ of degree d. Were H_{d} linearly normal, the dimension of the corresponding embedding space should be $n=d-\mathrm{I}$, by induction; if not, it would be $n<d-\mathrm{I}$. So we must have $n=d+s-2 \leq d-\mathrm{I}$.

Step 2. There results $s=0$. By absurd suppose $s=\mathrm{I}$, i.e. $\mathrm{W}_{d} \subset \mathbf{P}^{d}$. We are proving this fact can not occur by analyzing the following three cases:

$$
\text { (a) } d<2 k-\mathrm{I} ; \quad \text { (b) } d \geq 2 k ; \quad \text { (c) } d=2 k-\mathrm{I} .
$$

In case (a) the thesis is trivial; in fact two distinct fibres $\mathrm{F}_{1}=\mathbf{P}^{k-1}$ and $\mathrm{F}_{2}=\mathbf{P}^{k-1}$ of W_{d} generate a $\mathbf{P}^{2 k-1}$.

In case (b) the linear span $\left\langle\mathrm{F}_{a}, \mathrm{~F}_{b}\right\rangle$ of two fibres F_{a} and F_{b} of W_{d} has codimension $\geq \mathrm{I}$; so there exists a hyperlane $\Pi \supseteq\left\langle\mathrm{F}_{a}, \mathrm{~F}_{b}\right\rangle$. In view of Remark 3.2, we have

$$
\mathrm{II} \cap \mathrm{~W}_{d}=\mathrm{F}_{a}+\mathrm{F}_{b}+\mathrm{F}_{a_{1}}+\cdots+\mathrm{F}_{a_{i}}+\mathrm{S},
$$

where $\mathrm{F}_{a_{1}}, \cdots, \mathrm{~F}_{a_{i}}$ are fibres of W_{d} and S is an elliptic ($k-\mathrm{I}$)-scroll of degree $d-2-i$. Suppose S is contained in \mathbf{P}^{n} (and not in any hyperplane of its). By induction

$$
\begin{equation*}
n \leq d-2-i-1 \tag{4.3}
\end{equation*}
$$

Denote by $\mathrm{L}=\left\langle\mathrm{S}, \mathrm{F}_{a_{1}}, \cdots, \mathrm{~F}_{a_{i}}, \mathrm{~F}_{a}\right\rangle$ the linear span of S and $\mathrm{F}_{a_{1}}, \cdots, \mathrm{~F}_{a_{i}}, \mathrm{~F}_{a}$. Remark that S cuts out on each fibre F of W_{d} the \mathbf{P}^{k-2} which is the corresponding fibre of S ; there follows that $\operatorname{dim} \mathrm{L} \leq n+i+\mathrm{I}$; recalling (4.3), $\operatorname{dim} \mathrm{L} \leq d-2$. So there is a pencil $\left\{\Pi_{t}\right\}_{t \in \mathbf{P}^{1}}$ of hyperplanes $\Pi_{t} \subset \mathbf{P}^{d}$ through L , at least. Such a Π_{t} intersects W_{d} along

$$
\mathrm{S}+\mathrm{F}_{a_{1}}+\cdots+\mathrm{F}_{a_{i}}+\mathrm{F}_{a}+\mathrm{R}
$$

where R is nothing but a fibre of W_{d}, by Remark 3.2. So it is defined a nonconstant morphism from \mathbf{P}^{1} to the elliptic base B of W_{d}. This is absurd.

In case (c), in order to exclude the varieties $\mathrm{W}_{d} \subset \mathbf{P}^{d}(d=2 k-\mathrm{I})$ consider a hyperlane Π containing a fibre F of W_{d} and the corresponding section $\Pi \cap \mathrm{W}_{d}=\mathrm{F}+\mathrm{S}$; by Remark 3.2, S is either a ($k-\mathrm{I}$)-scroll or a $(k-\mathrm{I})$ scroll plus some fibres $\mathrm{F}_{a_{1}}, \cdots, \mathrm{~F}_{a_{i}}$. The latter case does not occur: otherwise the fibres $F_{a_{1}}$ and F, contained in $\Pi=\mathbf{P}^{2 k-2}$, should meet. Suppose S is contained in \mathbf{P}^{n} (and not in any hyperplane of its). As S has degree d - I, by induction we have $n \leq d-2^{(3)}$; hence there exists a pencil $\left\{\Pi_{t}\right\}_{t \in \mathbf{P}^{1}}$ of hyperplanes $\Pi_{t} \subset \mathbf{P}^{d}$ through the \mathbf{P}^{n} containing S. Such a Π_{t} intersects W_{d} along $S+R$, where, by Remark $3.2, R$ is nothing but a fibre of W_{d}. Thus we can conclude, as in case (b).

There follows immediately
Remark 4.I. Let W be an elliptic k-scroll and H^{\prime} a general hyperplane section of its. Then H^{\prime} and each other general characteristic cycle of $\left|\mathrm{H}^{\prime}\right|$ is not linearly normal.

Let $\mathrm{W}_{d} \subset \mathbf{P}^{n}$ be a smooth k-dimensional linearly normal variety ($k \geq 2$) of degree d with elliptic curve sections. If W_{d} is a k-scroll, Theorem 4.I shows that $n=d-\mathrm{I}$. On the other side if $n=d-\mathrm{I}$ and $k \geq 3, \mathrm{~W}_{d}$ can be neither a cubic hypersurface nor a rational variety (see Remark 3.I). Hence, by Theorem 3.1, W_{d} is an elliptic k-scroll. The same conclusion holds if $k=2$ (cf. [6] Corollary 3.1). So we can state

THEOREM 4.2. Let $\mathrm{W}_{d} \subset \mathbf{P}^{n}$ be a k-dimensional linearly normal smooth variety $(k \geq 2)$ of degree d with elliptic curve sections. Then W_{d} is an elliptic k-scroll if and only if $n=d-\mathrm{I}$.
5. - As we already said the number of possible varieties occurring in case $i i$) of Theorem 3.I decreases as the dimension k of the variety increases. On the contrary here we show that the degree d of the varieties possibly

[^1]occurring in case iii) of Theorem 3.1 must satisfy the bare condition $d \geq 2 k+1$ and that for every admissible d there exists an elliptic k-scroll of degree d. This latter fact will be proved by exhibiting an explicit projective model. We start with the following

Proposition 5.1. Let $\mathrm{W}_{d} \subset \mathbf{P}^{d-1}$ be an elliptic k-scroll ($k \geq 2$) of degree d; then $d \geq 2 k+1$.

Proof. This fact is trivial for $k=2$. Let us continue the proof by induction on k. By absurd, let $\mathrm{W}_{d} \subset \mathbf{P}^{d-1}$ be an elliptic k-scroll of degree

$$
\begin{equation*}
d<2 k+\mathrm{I} \tag{5.I}
\end{equation*}
$$

Consider a fibre F of W_{d}, a hyperplane Π containing F and the corresponding section

$$
\begin{equation*}
\Pi \cap W_{d}=\mathrm{F}+\mathrm{S} . \tag{5.2}
\end{equation*}
$$

By reasoning as in the proof of Theorem 4.I (Step 2, case (c)) we conclude that S is an elliptic ($k-\mathrm{I}$)-scroll of degree $d-\mathrm{I}$. Consider the linearly normal ($k-1$)-scroll S^{\prime} of degree $d-1$ embedded by the complete linear system of the hyperplane sections of S . By Theorem 4.2, S^{\prime} is contained in \mathbf{P}^{d-2}; so, by induction, $d-\mathrm{I} \geq 2(k-\mathrm{I})+\mathrm{I}$. Recalling (5.I) it can only be $d=2 k$. In this case consider the ($k-\mathrm{I}$)-scroll S in (5.2) and let L be a $\mathbf{P}^{d-k}=\mathbf{P}^{k}$ containing the fibre F. By applying repeatedly Remark 3.2 we see that $L \cap S$ contains an elliptic curve C, isomorphic to B, which must be a section of W_{d} (in the sense that C intersects each fibre in one point only). But as F is a hyperplane in $L, C \operatorname{ard}(C \cap F)=\operatorname{deg} C$, and $\operatorname{deg} C>I, C$ being elliptic.

The bound given by Proposition 5.I is as best as possible. In fact, for each $k \geq 2$, we are going to construct an elliptic k-scroll of degree $d=2 k+\mathrm{I}$. This construction generalizes the one given in [5] for the quintic elliptic 2 -scroll in \mathbf{P}^{4}.

In $\mathbf{P}^{2 k}$ consider k distinct 2 -planes $\pi_{i}(i=\mathrm{I}, \cdots, k)$ pairwise intersecting in a single common point p_{0} and spanning the whole $\mathbf{P}^{2 k}$. Consider also an elliptic curve B and k distinct points b_{1}, \cdots, b_{k} of B such that each $b_{i}-b_{j}$ ($i, j=\mathrm{I}, \cdots, k ; i \neq j$) is not of order three, i.e.

$$
\begin{equation*}
3\left(b_{i}-b_{j}\right) \neq \mathrm{o} \quad(i, j=\mathrm{I}, \cdots, k ; i \neq j) \tag{5.3}
\end{equation*}
$$

Let $\eta_{i}: \mathrm{B} \rightarrow \pi_{i}(i=1, \cdots, k)$ be a closed immersion such that $\eta_{i}\left(b_{i}\right)=p_{0}$, ($i=\mathrm{I}, \cdots, k$), and denote by $\mathrm{B}_{\boldsymbol{i}}$ the elliptic cubic curve $\eta_{i}(\mathrm{~B})$. For each $b \in \mathrm{~B}, b \neq b_{i}$ consider the \mathbf{P}^{k-1}

$$
\begin{equation*}
\mathrm{F}_{b}=\left\langle\eta_{1}(b), \eta_{2}\left(b+b_{2}-b_{1}\right), \cdots, \eta_{k}\left(b+b_{k}-b_{1}\right)\right\rangle \tag{5.4}
\end{equation*}
$$

spanned by the independent points $\eta_{i}\left(b+b_{i}-b_{1}\right) \in \mathrm{B}_{i}(i=1, \cdots, k)$. Consider also the map

$$
\Phi: \mathrm{B} \backslash\left\{b_{1}\right\} \rightarrow \operatorname{Grass}(k-\mathrm{I}, 2 k)
$$

which takes values in the Grassmann manifold of the \mathbf{P}^{k-1} 's in $\mathbf{P}^{2 k}$, defined by $\Phi(b)=\mathrm{F}_{b}$. Denote by $\bar{\Phi}$ its extension to B and put

$$
\begin{equation*}
\mathrm{F}_{b_{1}}=\bar{\Phi}\left(b_{1}\right) \tag{5.5}
\end{equation*}
$$

Lemma 5.I. If $b, b^{\prime} \in \mathrm{B}$ are two distinct points, then $\mathrm{F}_{b} \cap \mathrm{~F}_{b^{\prime}}=\varnothing$.
Proof. i) Suppose $b, b^{\prime} \in \mathbf{B} \backslash\left\{b_{1}\right\}$. Put $p_{i}=\eta_{i}\left(b+b_{i}-b_{1}\right)$ and $p_{i}^{\prime}=\eta_{i}\left(b^{\prime}+b_{i}-b_{1}\right),(i=1, \cdots, k)$. There results

$$
\mathrm{F}_{b}=\left\langle p_{1}, \cdots, p_{k}\right\rangle \quad \text { and } \quad \mathrm{F}_{b^{\prime}}=\left\langle p_{1}^{\prime}, \cdots, p_{k}^{\prime}\right\rangle
$$

By absurd, suppose $\mathrm{F}_{b} \cap \mathrm{~F}_{b^{\prime}} \neq \varnothing$; there follows

$$
\begin{equation*}
\operatorname{dim}\left\langle\mathrm{F}_{b}, \mathrm{~F}_{b^{\prime}}\right\rangle \leq 2 k-2 . \tag{5.6}
\end{equation*}
$$

Let l_{i} be the line $\left\langle p_{i}, p_{i}^{\prime}\right\rangle$ and suppose such lines are pairwise skew. The linear span $\mathrm{S}_{1,2}=\left\langle l_{1}, l_{2}\right\rangle$ has dimension 3. Moreover $\mathrm{S}_{1,2} \subset\left\langle\pi_{1}, \pi_{2}\right\rangle$; so $\mathrm{S}_{1,2} \cap l_{3}$, which is contained in $\left\langle\pi_{1}, \pi_{2}\right\rangle \cap \pi_{3}=\left\{p_{0}\right\}$, is either empty or reduced to p_{0}. But the latter case can not happen and so

$$
\begin{equation*}
\mathrm{S}_{1,2} \cap l_{3}=\varnothing . \tag{5.7}
\end{equation*}
$$

In fact, if $\mathrm{S}_{1,2} \cap l_{3}=\left\{p_{0}\right\}$, then there were two lines l_{3} and l_{1} (or l_{2}) through p_{0}, contradicting our assumption; to see this it is sufficient to prove that if $\mathrm{S}_{1,2} \ni p_{0}$ then l_{1} (or l_{2}) itself contains p_{0}. In fact, as $\operatorname{dim} \mathrm{S}_{1,2}=3, \mathrm{~S}_{1,2}$ cannot contain $\pi_{1} \cup \pi_{2}$. So it cuts out on one of them ${ }^{(4)}$, suppose π_{1}, the line l_{1}. But l_{1} intersects the cubic curve B_{1} in p_{1}, p_{1}^{\prime} and in a further point which must be p_{0}, as $p_{0} \in \mathrm{~S}_{1,2}$; hence $p_{0} \in l_{1}$. Thus (5.7) is true and then $\mathrm{S}_{1,2,3}=$ $=\left\langle\mathrm{S}_{1,2}, l_{3}\right\rangle=\left\langle l_{1}, l_{2}, l_{3}\right\rangle$ has dimension 5. By repeating the same argument we conclude

$$
\begin{equation*}
\operatorname{dim}\left\langle l_{1}, l_{2}, \cdots, l_{k}\right\rangle=2 k-\mathrm{I} \tag{5.8}
\end{equation*}
$$

As $\left\langle\mathrm{F}_{b}, \mathrm{~F}_{b^{\prime}}\right\rangle=\left\langle l_{1}, \cdots, l_{k}\right\rangle,(5.8)$ contradicts (5.6). Thus the lines l_{i} cannot be pairwise skew. Suppose $l_{i} \cap l_{j} \neq \varnothing$; it must be $l_{i} \cap l_{j}=\left\{p_{0}\right\}$, and so the triple $p_{0}, p_{i}, p_{i}^{\prime}$ (respectively $p_{0}, p_{j}, p_{j}^{\prime}$) is collinear on B_{i} (respectively on B_{j}). This means that the pair $b+b_{i}-b_{1}, b^{\prime}+b_{i}-b_{1}$ must belong to the
(4) It could be seen (cf. the following part of this proof) that if $p_{0} \in S_{1,2}$ and $S_{1,2} \not \supset \pi_{1}$, then $S_{1,2} \supset \pi_{2}$.
g_{2}^{1} defined by b_{i} on B and that the pair $b+b_{j}-b_{1}, b^{\prime}+b_{j}-b_{1}$ must belong to the g_{2}^{1} defined by b_{j} on B . Therefore it must be

$$
b+b_{i}-b_{1}+b^{\prime}+b_{i}-b_{1}+b_{i}=0, b+b_{j}-b_{1}+b^{\prime}+b_{j}-b_{1}+b_{j}=0 .
$$

But such relations cannot hold together by the assumption (5.3).
ii) Suppose $b^{\prime}=b_{1}$. Assuming, by absurd, $\mathrm{F}_{b} \cap \mathrm{~F}_{b^{\prime}} \neq \varnothing$, reasoning similarly to the case i) and taking into account (5.5), one sees that the relations

$$
b+b_{i}-b_{1}+2 b_{i}=0 \quad, \quad b+b_{j}-b_{1}+2 b_{j}=0
$$

must hold together for some i and $j(i \neq j)$. Again this contradicts (5.3).
Now put

$$
\begin{equation*}
\mathrm{W}=\bigcup_{b \in \mathrm{~B}} \mathrm{~F}_{b} ; \tag{5.9}
\end{equation*}
$$

there holds the following
Proposition 5.2. W is an elliptic k-scroll over B embedded in $\mathbf{P}^{2 k}$ and of degree $d=2 k+1$.

Proof. By construction and Lemma 5.1 it follows immediately that (5.9) defines an elliptic k-scroll (over B) $\mathrm{W} \subset \mathbf{P}^{2 k}$; we prove by induction that it has degree $d=2 k+\mathrm{I}$. For $k=2, \mathrm{~W}$ is the quintic elliptic 2 -scroll in \mathbf{P}^{4} (cf. [5], Prop. 5.1). Otherwise consider a hyperplane $\Pi \subset \mathbf{P}^{2 k}$ containing the planes $\pi_{1}, \cdots, \pi_{k-1}$. The hyperplane Π cuts out on the cubic curve B_{k} the point p_{0} and two other points p_{1} and p_{2}. Hence $W \cap \Pi$ is constituted by the two fibres of W through p_{1} and p_{2} and by the ($k-\mathrm{I}$)-scroll S generated by the cubic curves $\mathrm{B}_{1}, \cdots, \mathrm{~B}_{k-1}$ (in the same way as W is generated). So $\operatorname{deg} W=2+\operatorname{deg} S$, and by induction on S we conclude.

The previous construction can be generalized and gives a model of an elliptic k-scroll of degree d for each $d \geq 2 k+\mathrm{I}$. Replace the 2 -planes π_{i} ($i=\mathrm{I}, \cdots, k$) by linear spaces L_{i} of dimensions $r_{i}\left(r_{i} \geq 2\right)$ contained in \mathbf{P}^{r} ($r=\Sigma r_{i}$), pairwise intersecting in a single common point p_{0} and generating the whole \mathbf{P}^{r}. Replace the cubic curves B_{i} by elliptic curves of degree $r_{i}+\mathbf{I}$ isomorphic to B via closed immersions η_{i}. Define the ($k-1$)-linear space F_{b} as in (5.4). Lemma 5.1 continues to hold and so a formula analogous to (5.9) defines a variety W which is easily seen to be an elliptic k-scroll over B of degree $d=\sum_{i=1}^{k} r_{i}+1=r+1$ contained in \mathbf{P}^{r}.

References

[I] G. Castelnuovo (1894) - Sulle superficie algebriche le cui sezioni piane sono curve ellittiche. "Rend. Accad. Naz. Lincei" (5) 3, 229-232.
[2] F. Enriques (1894) - Sui sistemi lineari di superficie algebriche le cui intersezioni variabili sono curve ellittiche. "Rend. Accad. Naz. Lincei» (5) 3, 481-487.
[3] F. Enriques (1895) - Sui sistemi lineari di superficie algebriche ad intersezioni variabili iperellittiche. "Math. Ann." 46, 179-199.
[4] A. Lanteri, M. Palleschi (1980) - Algebraic varieties with elliptic curve sections and k-dimensional elliptic scrolls. "Quad. Ist. Mat. "F. Enriques"", Milano.
[5] A. Lanteri, M. Palleschi (1978) - Osservazioni sulla rigata geometrica ellittica di \mathbf{P}^{4}. «Istituto Lombardo (Rend. Sc.)" A II2, 223-233.
[6] A. Lanteri, M. Palleschi (1979) - Sulle rigate ellittiche. «Rend. Accad. Naz. Lincei» (8) $67, \mathrm{I}-2,87-94$.
[7] L. Roth (1955) - Algobraic threefolds with special regard to problems of rationality. Springer. Berlin-Gottingen-Heidelberg.
[8] G. Scorza (1908) - Le varietà a curve sezioni ellittiche. "Ann. di Mat." (3) 15, $217-273$.
[9] G. SCORZA (1908) - Le varietà a curve sezioni ellittiche. "Rend. Accad. Naz. Lincei» (5) 17, 10-1I.

[^0]: (*) Lavoro eseguito nell'ambito dell'attività del G.N.S.A.G.A. del C.N.R.
 (**) Istituto matematico «F. Enriques» - Via C. Saldini, 50 - Milano.
 (***) Nella seduta del io maggio 1980.

[^1]: (3) Really it is $n=d-2$; otherwise two fibres of S should meet.

