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G eom etria algebrica. —  On k-dimensional elliptic scrolls (*>. 
Nota di A n to n io  L a n te r i  e M a r in o  P a l le s c h i  <**>, presentata <***) 
dal Corrisp. E. M a r ch io n n a .

RIASSUNTO. — Le varietà algebriche proiettive complesse, non singolari, di dimensione 
k >  3 (grado d  >  3), a curva sezione ellittica, o sono razionali o sono fasci ellittici di spazi 
lineari.

Le varietà del primo tipo sono state studiate e classificate da Enriques (cfr. [2], [3]) 
e Scorza (cfr. [8]); alle varietà del secondo tipo è dedicata la presente Nota.

Si illustrano alcune proprietà delle varietà fibrate in spazi lineari su di una curva ellit­
tica, e si studiano i loro modelli linearmente normali W. Indicati con d  e k il grado e la dimen­
sione di una siffatta W e con n la dimensione del minimo spazio di appartenenza, si dimostra 
che d  >  2k +  I, d  =  n — 1. Infine, assegnata la curva ellittica base, si costruisce un mo­
dello esplicito di una W del tipo considerato per una qualunque dimensione k e per un qua­
lunque grado d  >  nk -f- 1.

i. -  This paper is concerned with /é-dimensional projective irreducible 
and complex algebraic varieties with elliptic curve sections with special regard 
to yè-dimensional elliptic scrolls.

The yè-dimensional varieties W c  Pn with elliptic curve sections were 
studied by Castelnuovo (cf. [1 ]) for k =  2, Enriques (cf. [2], [3]) for k =  3 
and Scorza (cf. [8], [9]) for k >  3. Substantially they show that such 
varieties (but cones and cubic hypersurfaces) are either elliptic pencils of 
P*-1’s or rational varieties.

The ratijonal case is deeply analyzed in the previously quoted works by 
Enriques and Scorza (see also [7], pp. 59-60).

The present paper is devoted to the study of the elliptic case (not 
developed in the classical works).

Specifically here we consider an irreducible smooth yè-dimensional (k >  3) 
complex algebraic variety W c: ¥ n with elliptic curve sections. In sec. 3 we 
notice that if W is neither a rational variety nor a cubic hypersurface, then it 
is an elliptic vé-scroll. In sec. 4 we show that the linearly normal models of 
such W’s are varieties of degree d  in P ^ 1 (non-hyperplane). We complete 
this result by proving (Theorem 4.2) that a ^-dimensional (k >  2) linearly 
normal variety c  Pn of degree d  with elliptic curve sections is an elliptic

(*) Lavoro eseguito nell’ambito dell’attività del G.N.S.A.G.A. del C.N.R.
(**) Istituto matematico « F. Enriques» -  Via C. Saldini, 50 -  Milano.

(***) Nella seduta del io maggio 1980.
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/è-scroll if and only if n = d  — 1. In see. 5 we prove that an elliptic / -̂scroll 
(k > 2 )  W.cz P^-i has degree d ' > 2 k  +  1, and we show that for every 
admissible d there exists an elliptic / -̂scroll of degree d> by constructing an 
explicit model of it.

2. -  From now on, the word variety will always mean irreducible com­
plex projective algebraic variety. Such a variety of dimension k — 1 or 
k ~ 2  will be called curve or surface respectively.

Let V be a smooth variety of any dimension ky and | D| the complete linear 
system associated to a divisor D on V. We shall denote by Gy the structural 
sheaf of V; by Gy (D) the invertible sheaf associated to D; by hq (Gy (D)J =  hq (D) 
the complex dimension of the q-th. cohomology vector space Hg(V, Gy(D)) =  
=  H q (Gy (D)). In the case k >  2 consider an irreducible and smooth hyper- 
surface S on V; it is known that there exists a divisor D' on V, linearly equi­
valent to D (briefly D' == D) which does not contain S as a component and is 
transversal to S. By D-S we denote the divisor on S (defined mod linear 
equivalence*) which D' cuts out on S. For k — 2 the symbol (D-C) represents 
the intersection index of the divisors D and C on the surface V; if D =  C, 
we also write (D*C) =  (C2).

Now let B be a smooth curve and Pr the r-dimensional complex projective 
space. From now on, by saying that a variety V is contained in Pr (or by 
writing V c  Pr) we mean that V is in Pr but not in any hyperplane of its.

A k-dimensional scroll over B (briefly a ^-scroll) is a smooth variety V 
embedded in some Pr endowed with a morphism tc : V -> B such that 
Fb =  tc“ 1 (^)-is a PÆ_1, for each b e  B (1). If B is an elliptic curve, such a V is 
said an elliptic yè-scroll.

Finally we introduce some other notations occurring in the sequel. 
On a ^-dimensional smooth variety V consider a very ample divisor H. Ob­
viously it is always possible to choose i ( i  = 1 , - • •, k — 1) smooth irreducible 
hypefsurfaces H1, H2 ,• • - , FL, belonging to | H | , pairwise transversal and 
such that the (k — i)-dimensional algebraic characteristic cycle 
f i H2n  ••• f i H i (defined by intersecting these i hypersurfaces) is irreducible 
and smooth. We denote also by E the characteristic cycle Hl .

By means of well-known facts holding for complex smooth varieties, 
some standard cohomological calculations (see [4], sec. 2) give

Remark 2.1. If k >  3 and h1 (<Pu2) =  o, then h° (J9y (H)) = k° (@n2 (E)) +  
-j- k -— 2.

Remark 2.2. Suppose k >  3 and 1, h2((Pn9) =  hl f&Hofà)) =  o.
Then h° (Oy (H)) = h° (0Ha (E)) +  where o <  s <  k — 2.

(1) Remark that sl k-scroll is a model of the projectivized Proj (ß) of a vector bundle ê  
of rank k over B.
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3. -  In [8] G. Scorza studied the /è-dimensional varieties W c  P" with 
elliptic curve sections. If such a variety W is not a cone and if deg W >  3, 
then he shows that W must be either a rational variety or an elliptic pencil 
of pfc-i’s. Now, recalling the notations introduced in sec. 2 and denoting by 
®H the closed immersion defined by | H | , this result can be reseated as 
follows.

Theorem  3.1. (Enriques-Scorza). -  Let V be a k-dimensional smooth 
variety (k >  3) endowed with a very ample linear system | H | the general cha­
racteristic I -cycle E of which is an elliptic curve. Then only the following cases 
can occur:

i) V is isomorphic, via Oh , to a smooth cubic hyp er surf ace of P^+1 ;
it) V is a rational variety;
Ui) V is isomorphic, via <PH, to an elliptic k-scroll over E.

Another proof, different from the original one, can be found in [4].

Remark 3.1. If E is an elliptic curve, the 2-dimensional characteristic 
cycle H2 is either a rational surface or it is isomorphic to an elliptic 2-scroll 
(Castelnuovo [1 ] ; for a different proof working over any algebraically closed 
field see also [6], Theorem 3.1). From the proof of Theorem 3.1 in [4], one 
sees that the former case corresponds to i) and ii), whilst the latter case cor­
responds to Hi). In the former case Remark 2.1 shows that the linearly normal 
models =  Oh (V) of the V's occurring in case ii) are varieties of degree 
d  =  (E2) in P ^ " 2.

For the sequel we need also the following

Remark 3.2. Let W cz Pw be a k-scroll (k > 3 )  over a (smooth) curve 
B and let H' be a hyperplane section of its. Then there happens: either /) 
H' is a (k — i)-scroll over B, or ii) H' — Fbl -f • • • +  +  S where Fftj. is a
fibre of W apd S is a ( k — i)-scroll over B (2), (cf. [4]).

4. -  Theorem 3.1 is particularly meaningful when H is a general hyper­
plane section of a smooth ^-dimensional variety W <z Yn. In this case it says 
that a smooth variety W d a  *Pn of degree d > 3 with elliptic curve sections is 
either a rational variety or an elliptic /é-scroll. The rational case (case ii) of 
Theorem 3.1) has been studied, for k — 3, by Enriques in [2] (see also [3]). 
He proved that the linearly normal models of the rational threefolds with 
elliptic curve sections are varieties W^c P ^ 1 of degree d  (4 <  d  <  8) repre­
sentable on P3 by a linear system of quadric or cubic surfaces. For k >  3, 
the linearly normal models in the rational case have been studied by Scorza 
(cf. [8]). They are, for k. =  4 , a W5c=P7> and a W6c:P8; for k =  5 , a

(2) In a sense this Remark has a converse (see [4], Prop. 3.1); it could also be easily 
proven (cf. the following Theorem 5.1) that 1 <  r  <  deg W — 2k-\- 1.
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W5c: P8; for k =  6 the Grassmannian W5c  P9, and, for each k >  3, there is 
always the complete intersection W4 a  P*+2 of two quadrics.

This sec. is meanly devoted to the analysis of elliptic / -̂scrolls, i.e. we 
are dealing with the case in) of Theorem 3.1.

Now consider a ^-dimensional smooth variety V (k >  2), a complete 
very ample linear system ] H ] on V, and its characteristic cycles H2 and FL1 =  E. 
From now on suppose E is an elliptic curve; so we know (cf. [6]) H2 is either 
a rational surface or an elliptic geometrically ruled surface (to wit it is 
isomorphic to an elliptic 2-scroll). From now on suppose also we are in the 
latter case; so, if k >  3 all we said in Remark 3.1 implies that the variety 
Wd — Oh (V) is a linearly normal elliptic k-scroll of degree d  — (E2); note 
that this conclusion holds also for k =  2̂  (cf. [6];. It is known (cf. [6], 
p. 91) that

( 4 .1 ;  A ° ( 0 h 2 ( E  ) ) = d

and h1 (JDh2 (E)).= o; moreover, as H2 is supposed to be an elliptic ruled sur­
face if vè >; 3, we can apply Remark 2.2 and conclude that

(4.2) #>(e>v(ii)) =  d  + s,

where o <  s <  k —  2. So, a priori, W d is a linearly normal /è-scroll of degree 
d  in P^+s-1. Really, for each k >  2 (if k =.2 see (4.1)), we can prove the 
following

T heorem  4.1. W d is contained in P^"1 (i.e. s =  o).

Proof. In case k =  2 our thesis follows immediately from all we 
said; so we prove the theorem by induction on k.

Step j . There results i* <  1. By Remark 3.2 the general hyperplane 
section of W d a  p̂ +s-”1 is an elliptic (k — 1 )-scroll Hri c= p̂ +s-2 0f degree d. 
Were1 Hd linearly normal, the dimension of the corresponding embedding 
space should be n =  d — 1, by induction; if not, it would be n <  d —  1. So 
we must have n =  d +  s — 2 < .d  — 1.

Step 2 . There results s =  o. By absurd suppose i- =  1, i.e. Wdc:P4 
We are proving this fact can not occur by analyzing the following three 
cases:

(d) d  < 2 k — I ; (6) d  > 2  k ; (c) d  — 2 k — 1.

In case (a) the thesis is trivial; in fact two distinct fibres F1 — PÄ_1 and 
F2 =  P ^ 1 of W d generate a P2̂ -1.

In case (b) the linear span (Fa , F&) of two fibres Fa and Fb of has 
codimension > 1 ; so there exists a hyperlane II . 2  (Fa , F6). In view of Re­
mark 3.2, we have

IT H W d — Fa +  Fb +  Fai +  • • • +  Fa/ +  S ,
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where Ffll , • • - , ¥a. are fibres of Wd and S is an elliptic (k —- i)-scroll of degree 
d — 2 — i. Suppose S is contained in Pn (and not in any hyperplane of its). 
By induction

(4.3) n < d  — 2 — i — I .

Denote by L =  (S , Fa i, • • •, Fa. , Fa) the linear span of S and Fa i, • • •, Fa. , Fa. 
Remark that S cuts out on each fibre F of W d the P^~2 which is the corre­
sponding fibre of S; there follows that dim L <  n +  i +  1;. recalling (4.3), 
dim L <  d  — 2. So there is a pencil ( n ^ ePi of hyperplanes Ut cz Vd through 
L, at least. Such a IIt intersects W d along

S + Fai H-----h Fa. + Fa + R ,

where R is nothing but a fibre of W^, by Remark 3.2. So it is defined a non­
constant morphism from P1 to the elliptic base B of Wd. This is absurd.

In case (c), in order to exclude the varieties W^cz Ÿd (d =  2 k — 1) con­
sider a hyperlane II containing a fibre F of W d and the corresponding section 
Il O =  F +  S ; by Remark 3.2, S is either a (k — i)-scroll or a (k — 1)- 
scroll plus some fibres Fa i, • * •, ¥a. . The latter case does not occur : otherwise 
the fibres Fai and F , contained in II =  P2*-2, should meet. Suppose S is 
contained in Vn (and not in any hyperplane of its). As S has degree d —- 1, 
by induction we have n <  d  — 2 (3); hence there exists a pencil { II^ePi of 
hyperplanes II) c: P  ̂ through the Fn containing S. Such a IIt intersects W d 
along S -fi- R , where, by Remark 3.2, R is nothing but a fibre of W d. Thus 
we can conclude, as in case (b).

There follows immediately

Remark 4.1. Let W be an elliptic /é-scroll and H' a general hyperplane 
section of its. Then H' and each other general characteristic cycle of | H' | 
is not linearly normal.

Let W dŒïFn be a smooth /è-dimensional linearly normal variety (/è >  2) 
of degree d  with elliptic curve sections. If W d is a ^-scroll, Theorem 4.1 
shows that n =  d  —  1. On the other side if n =  d — 1 and k >  3, W d can 
be neither a cubic hypersurface nor a rational variety (see Remark 3.1). 
Hence, by Theorem 3.1, W d is an elliptic /é-scroll. The same conclusion 
holds if k =  2 (cf. [6] Corollary 3.1). So we can state

THEOREM 4.2. Let W d cz P n be a k-dimensional linearly normal smooth 
variety ( k > 2 )  of degree d  with elliptic curve sections. Then W d is an elliptic 
k-scroll i f  and only i f  n =  d  -— 1.

5. -  As we already said the number of possible varieties occurring in 
case it) of Theorem 3.1 decreases as the dimension k of the variety increases. 
On the contrary here we show that the degree d  of the varieties possibly

(3) Really it is n = d — 2; otherwise two fibres of S should meet.
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occurring in case in) of Theorem 3.1 must satisfy the bare condition 
d > 2 k +  I and that for every admissible d  there exists an elliptic iè-scroll 
of degree d. This latter fact will be proved by exhibiting an explicit 
projective model. We start with the following

PROPOSITION 5.1. Let W dcz P ^ 1 be an elliptic k-scroll (k >  2; of degree 
d\ then d  >  2 k +  1.

Proof. This fact is trivial for k =  2. Let us continue the proof by 
induction on k. By absurd, let W ^ P ^ “1 be an elliptic >è-scroll of degree

(5.1) d  <  2 k +  I .

Consider a fibre F of W d, a hyperplane II containing F and the corresponding 
section

(5.2) n n wd =  F +  s .

By reasoning as in the proof of Theorem 4.1 (Step 2, case (c)) we conclude 
that S is an elliptic (k — 1)-scroll of degree d — 1. Consider the linearly 
normal ( k — i)-scroll S' of degree d — 1 embedded by the complete linear 
system of the hyperplane sections of S. By Theorem 4.2, S' is contained in 
j>d-2. SOj b y induction, d —-1 >  2 ( £— 1) -f 1. Recalling (5.1) it can only 
be d  — 2 k. In this case consider the (k —  i)-scroll S in (5.2) and let L be a 
PA~h =  P* containing the fibre F. By applying repeatedly Remark 3.2 we 
see that LO S contains an elliptic curve C, isomorphic to B, which must be 
a section of W d (ip the sense that C intersects each fibre in one point only). 
But as F is a hyperplane in L, Card (C fi F) =  degC, and deg C >1, C being 
elliptic.

The bound given by Proposition 5.1 is as best as possible. In fact, for 
each k >  2, we are going to construct an elliptic ^-scroll of degree d  =  2 k +  1. 
This construction generalizes the one given in [5] for the quintic elliptic 
2-scroll in P4.

In P2* consider k distinct 2-plahes 7zi (i =  1 , • • - , k) pairwise intersecting 
in a single common point p0 and spanning the whole P2*. Consider also an 
elliptic curve B and k distinct points bx ,• • - , bh of B such that each bi — bj 
{i , j  — I , • - , k ; i 7  ̂j )  is not of order three, i.e.

(5-3) 3 —

Let : B > (i =  1 , • • • , k) be a closed immersion such that Y]i (£$) =  p0,
(i — I , • • - , k), and denote by Bi the elliptic cubic curve v)i(B). For each 
b G B , b bi consider the P*-1

Fft =  (’ll {à) , t]2 (b +.bi — èj) , ■ • -, t\h (b +  bk — b̂ j)( 5-4 )
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spanned by the independent points {b. +  bi — e (i — 1 , • • •, k). 
Consider also the map

® : B \{ 4} —>• Grass (k — 1 ,2 k)

which takes values in the GraLsmann manifold of the P*-1’s in-P2*, defined 
by ® (b) =  Fb. Denote by ® its extension to B and put

( 5 -5) F &! — ®  ( p i )  •

LEMMA 5.1. I f  b , b' g B are two distinct points, then F&fi F&/ == 0 .

Proof. i) Suppose b } b' e B \{ 4 }- Put p i =  ^  (b +  bi — bx) and 
pi =  y\i(br +  bi — bf) , (i =  I , • • •. k). There results

F b=  ( A r - ,  PÙ and F&, =  (p[ , • • •, pic) .

By absurd, suppose F&fi Fft/ 9^0 ; there follows

(5.6) ' dim (Fb , F&/) <  2 k — 2 .

Let li be the line {p i, pi) and suppose such lines are pairwise skew. The 
linear span Si>2 =  (4 , 4) has dimension 3. Moreover Si,2c  f a  , 7t 2) ; so 
Si, 2 H /3 , which is contained in (tci , 7t2) O tc3 =  .{̂ 0} » ls either empty or redu­
ced to p0. But the latter case can not happen and so

(5.7) Si,2n / 3 =  0 .

In fact, if Si,an / 3 =  {po} , then there were two lines /3 and 4 (or /2) through 
p0i contradicting our assumption; to see this it is sufficient to prove that if 
Si,2 9 po then 4 (or /2) itself contains p0. In fact, as dim Si,2 =  3 , Si,2 cannot 
contain 7Ui Ü 7t2. S o  it cuts out on one of them (4), suppose tci, the line 4 - But 
4 intersects the cubic curve Bt in px , p x and in a further point which must 
be po, as p0e§i,2]  hence p0e l x. Thus (5.7)' is true and then Si,2,3 =  
— (Si,2 , 4) =  (4 , 4  > 4) has dimension 5. By repeating the same argument 
we conclude

(5.8) dim <4 , 4  , • • -, 4} =  2k — I .

As (Fb F&/) =  (4 >’ **>4 )> (5-8) contradicts (5.6). Thus the lines 4 cannot 
be pairwise skew. Suppose 4 0 / ^ 0  ; it must be 4 Gl 4 =  {p0}, and so the 
triple po , p i , pi (respectively p0 , p$ , pj) is collinear on B̂  (respectively on 
B̂ ). This means that the pair b -)- b{ — bx , b' +  4  — 4l must belong to the

(4) It could be seen (cf. the following part of this proof) that if p 0 eS12 and Si2 7) Ti] 
then S1>2D7t2.
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gl defined by bi on B and that the pair b +  b5 — bx, b' +  b$ — bx must belong 
to the gl defined by bj on B. Therefore it must be

b T~ bi — b1 +  V  +  bi — bi +  bi =  o , b +  bj — bx b +  bj — 1̂ +  ^  =  0.

But such relations cannot hold together by the assumption (5.3).

ii) Suppose b '=  bv Assuming, by absurd, F6H F &/ 7^ 0 , reasoning 
similarly to the case i) and taking into account (5.5), one sees that the relations

b +  bi — b1 +  2 bi =  o , b 4" &j — bi +  2 bj =  o

must hold together for some r a n d  j  ( i f i j ) .  Again this contradicts (5.3). 
Now put

(5-9; W =  (J F6 ;
be  B

there holds the following

PROPOSITION 5.2. W is an elliptic k-scroll over B embedded in P2X? and 
of degree d — 2 k +  1.

Proof. By construction and Lemma 5.1 it follows immediately that (5.9) 
defines an elliptic /^-scroll (over Bj W c  P2X?; we prove by induction that it 
has degree d  == 2 k +  1. For k =  2, W is the quintic elliptic 2-scroll in P4 
(cf. [5], Prop. 5.1). Otherwise consider a hyperplane II cz P2* containing the 
planes 7̂  , • • - , nk̂ 1. The hyperplane II cuts out on the cubic curve Bj. the 
point pQ and two other points px and p2. Hence W O II is constituted by the 
two fibres of W through px and p2 and by the (k — i)-scroll S generated by 
the cubic curves Bj B ^  (in the same way as W is generated). So 
deg W =  2 +  deg S , and by induction on S we conclude.

T̂ he previous construction can be generalized and gives a model of an 
elliptic yé-scroll of degree d  for each d  >  2 k +  1. Replace the 2-planes 71* 
(i =  I , • • - , k) by linear spaces L* of dimensions ri {ri >  2) contained in Pr 
(r =  pairwise intersecting in a single common point p0 and generating
the whole Pr. Replace the cubic curves B̂  by elliptic curves of degree r% +  1 
isomorphic to B via closed immersions y ^ .  Define the (k —  i)-linear space F& 
as in (5.4). Lemma 5.1 continues to hold and so a formula analogous to (5.9) 
defines a variety W which is easily seen to be an elliptic k-scroll over B of degree

h
d ^ y r .  +  i =  r  +  I contained in Pr.
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