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G eom etria algebrica. —  On k-dimensional elliptic scrolls (*>. 
Nota di A n to n io  L a n te r i  e M a r in o  P a l le s c h i  <**>, presentata <***) 
dal Corrisp. E. M a r ch io n n a .

RIASSUNTO. — Le varietà algebriche proiettive complesse, non singolari, di dimensione 
k >  3 (grado d  >  3), a curva sezione ellittica, o sono razionali o sono fasci ellittici di spazi 
lineari.

Le varietà del primo tipo sono state studiate e classificate da Enriques (cfr. [2], [3]) 
e Scorza (cfr. [8]); alle varietà del secondo tipo è dedicata la presente Nota.

Si illustrano alcune proprietà delle varietà fibrate in spazi lineari su di una curva ellit
tica, e si studiano i loro modelli linearmente normali W. Indicati con d  e k il grado e la dimen
sione di una siffatta W e con n la dimensione del minimo spazio di appartenenza, si dimostra 
che d  >  2k +  I, d  =  n — 1. Infine, assegnata la curva ellittica base, si costruisce un mo
dello esplicito di una W del tipo considerato per una qualunque dimensione k e per un qua
lunque grado d  >  nk -f- 1.

i. -  This paper is concerned with /é-dimensional projective irreducible 
and complex algebraic varieties with elliptic curve sections with special regard 
to yè-dimensional elliptic scrolls.

The yè-dimensional varieties W c  Pn with elliptic curve sections were 
studied by Castelnuovo (cf. [1 ]) for k =  2, Enriques (cf. [2], [3]) for k =  3 
and Scorza (cf. [8], [9]) for k >  3. Substantially they show that such 
varieties (but cones and cubic hypersurfaces) are either elliptic pencils of 
P*-1’s or rational varieties.

The ratijonal case is deeply analyzed in the previously quoted works by 
Enriques and Scorza (see also [7], pp. 59-60).

The present paper is devoted to the study of the elliptic case (not 
developed in the classical works).

Specifically here we consider an irreducible smooth yè-dimensional (k >  3) 
complex algebraic variety W c: ¥ n with elliptic curve sections. In sec. 3 we 
notice that if W is neither a rational variety nor a cubic hypersurface, then it 
is an elliptic vé-scroll. In sec. 4 we show that the linearly normal models of 
such W’s are varieties of degree d  in P ^ 1 (non-hyperplane). We complete 
this result by proving (Theorem 4.2) that a ^-dimensional (k >  2) linearly 
normal variety c  Pn of degree d  with elliptic curve sections is an elliptic

(*) Lavoro eseguito nell’ambito dell’attività del G.N.S.A.G.A. del C.N.R.
(**) Istituto matematico « F. Enriques» -  Via C. Saldini, 50 -  Milano.

(***) Nella seduta del io maggio 1980.
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/è-scroll if and only if n = d  — 1. In see. 5 we prove that an elliptic / -̂scroll 
(k > 2 )  W.cz P^-i has degree d ' > 2 k  +  1, and we show that for every 
admissible d there exists an elliptic / -̂scroll of degree d> by constructing an 
explicit model of it.

2. -  From now on, the word variety will always mean irreducible com
plex projective algebraic variety. Such a variety of dimension k — 1 or 
k ~ 2  will be called curve or surface respectively.

Let V be a smooth variety of any dimension ky and | D| the complete linear 
system associated to a divisor D on V. We shall denote by Gy the structural 
sheaf of V; by Gy (D) the invertible sheaf associated to D; by hq (Gy (D)J =  hq (D) 
the complex dimension of the q-th. cohomology vector space Hg(V, Gy(D)) =  
=  H q (Gy (D)). In the case k >  2 consider an irreducible and smooth hyper- 
surface S on V; it is known that there exists a divisor D' on V, linearly equi
valent to D (briefly D' == D) which does not contain S as a component and is 
transversal to S. By D-S we denote the divisor on S (defined mod linear 
equivalence*) which D' cuts out on S. For k — 2 the symbol (D-C) represents 
the intersection index of the divisors D and C on the surface V; if D =  C, 
we also write (D*C) =  (C2).

Now let B be a smooth curve and Pr the r-dimensional complex projective 
space. From now on, by saying that a variety V is contained in Pr (or by 
writing V c  Pr) we mean that V is in Pr but not in any hyperplane of its.

A k-dimensional scroll over B (briefly a ^-scroll) is a smooth variety V 
embedded in some Pr endowed with a morphism tc : V -> B such that 
Fb =  tc“ 1 (^)-is a PÆ_1, for each b e  B (1). If B is an elliptic curve, such a V is 
said an elliptic yè-scroll.

Finally we introduce some other notations occurring in the sequel. 
On a ^-dimensional smooth variety V consider a very ample divisor H. Ob
viously it is always possible to choose i ( i  = 1 , - • •, k — 1) smooth irreducible 
hypefsurfaces H1, H2 ,• • - , FL, belonging to | H | , pairwise transversal and 
such that the (k — i)-dimensional algebraic characteristic cycle 
f i H2n  ••• f i H i (defined by intersecting these i hypersurfaces) is irreducible 
and smooth. We denote also by E the characteristic cycle Hl .

By means of well-known facts holding for complex smooth varieties, 
some standard cohomological calculations (see [4], sec. 2) give

Remark 2.1. If k >  3 and h1 (<Pu2) =  o, then h° (J9y (H)) = k° (@n2 (E)) +  
-j- k -— 2.

Remark 2.2. Suppose k >  3 and 1, h2((Pn9) =  hl f&Hofà)) =  o.
Then h° (Oy (H)) = h° (0Ha (E)) +  where o <  s <  k — 2.

(1) Remark that sl k-scroll is a model of the projectivized Proj (ß) of a vector bundle ê  
of rank k over B.
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3. -  In [8] G. Scorza studied the /è-dimensional varieties W c  P" with 
elliptic curve sections. If such a variety W is not a cone and if deg W >  3, 
then he shows that W must be either a rational variety or an elliptic pencil 
of pfc-i’s. Now, recalling the notations introduced in sec. 2 and denoting by 
®H the closed immersion defined by | H | , this result can be reseated as 
follows.

Theorem  3.1. (Enriques-Scorza). -  Let V be a k-dimensional smooth 
variety (k >  3) endowed with a very ample linear system | H | the general cha
racteristic I -cycle E of which is an elliptic curve. Then only the following cases 
can occur:

i) V is isomorphic, via Oh , to a smooth cubic hyp er surf ace of P^+1 ;
it) V is a rational variety;
Ui) V is isomorphic, via <PH, to an elliptic k-scroll over E.

Another proof, different from the original one, can be found in [4].

Remark 3.1. If E is an elliptic curve, the 2-dimensional characteristic 
cycle H2 is either a rational surface or it is isomorphic to an elliptic 2-scroll 
(Castelnuovo [1 ] ; for a different proof working over any algebraically closed 
field see also [6], Theorem 3.1). From the proof of Theorem 3.1 in [4], one 
sees that the former case corresponds to i) and ii), whilst the latter case cor
responds to Hi). In the former case Remark 2.1 shows that the linearly normal 
models =  Oh (V) of the V's occurring in case ii) are varieties of degree 
d  =  (E2) in P ^ " 2.

For the sequel we need also the following

Remark 3.2. Let W cz Pw be a k-scroll (k > 3 )  over a (smooth) curve 
B and let H' be a hyperplane section of its. Then there happens: either /) 
H' is a (k — i)-scroll over B, or ii) H' — Fbl -f • • • +  +  S where Fftj. is a
fibre of W apd S is a ( k — i)-scroll over B (2), (cf. [4]).

4. -  Theorem 3.1 is particularly meaningful when H is a general hyper
plane section of a smooth ^-dimensional variety W <z Yn. In this case it says 
that a smooth variety W d a  *Pn of degree d > 3 with elliptic curve sections is 
either a rational variety or an elliptic /é-scroll. The rational case (case ii) of 
Theorem 3.1) has been studied, for k — 3, by Enriques in [2] (see also [3]). 
He proved that the linearly normal models of the rational threefolds with 
elliptic curve sections are varieties W^c P ^ 1 of degree d  (4 <  d  <  8) repre
sentable on P3 by a linear system of quadric or cubic surfaces. For k >  3, 
the linearly normal models in the rational case have been studied by Scorza 
(cf. [8]). They are, for k. =  4 , a W5c=P7> and a W6c:P8; for k =  5 , a

(2) In a sense this Remark has a converse (see [4], Prop. 3.1); it could also be easily 
proven (cf. the following Theorem 5.1) that 1 <  r  <  deg W — 2k-\- 1.
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W5c: P8; for k =  6 the Grassmannian W5c  P9, and, for each k >  3, there is 
always the complete intersection W4 a  P*+2 of two quadrics.

This sec. is meanly devoted to the analysis of elliptic / -̂scrolls, i.e. we 
are dealing with the case in) of Theorem 3.1.

Now consider a ^-dimensional smooth variety V (k >  2), a complete 
very ample linear system ] H ] on V, and its characteristic cycles H2 and FL1 =  E. 
From now on suppose E is an elliptic curve; so we know (cf. [6]) H2 is either 
a rational surface or an elliptic geometrically ruled surface (to wit it is 
isomorphic to an elliptic 2-scroll). From now on suppose also we are in the 
latter case; so, if k >  3 all we said in Remark 3.1 implies that the variety 
Wd — Oh (V) is a linearly normal elliptic k-scroll of degree d  — (E2); note 
that this conclusion holds also for k =  2̂  (cf. [6];. It is known (cf. [6], 
p. 91) that

( 4 .1 ;  A ° ( 0 h 2 ( E  ) ) = d

and h1 (JDh2 (E)).= o; moreover, as H2 is supposed to be an elliptic ruled sur
face if vè >; 3, we can apply Remark 2.2 and conclude that

(4.2) #>(e>v(ii)) =  d  + s,

where o <  s <  k —  2. So, a priori, W d is a linearly normal /è-scroll of degree 
d  in P^+s-1. Really, for each k >  2 (if k =.2 see (4.1)), we can prove the 
following

T heorem  4.1. W d is contained in P^"1 (i.e. s =  o).

Proof. In case k =  2 our thesis follows immediately from all we 
said; so we prove the theorem by induction on k.

Step j . There results i* <  1. By Remark 3.2 the general hyperplane 
section of W d a  p̂ +s-”1 is an elliptic (k — 1 )-scroll Hri c= p̂ +s-2 0f degree d. 
Were1 Hd linearly normal, the dimension of the corresponding embedding 
space should be n =  d — 1, by induction; if not, it would be n <  d —  1. So 
we must have n =  d +  s — 2 < .d  — 1.

Step 2 . There results s =  o. By absurd suppose i- =  1, i.e. Wdc:P4 
We are proving this fact can not occur by analyzing the following three 
cases:

(d) d  < 2 k — I ; (6) d  > 2  k ; (c) d  — 2 k — 1.

In case (a) the thesis is trivial; in fact two distinct fibres F1 — PÄ_1 and 
F2 =  P ^ 1 of W d generate a P2̂ -1.

In case (b) the linear span (Fa , F&) of two fibres Fa and Fb of has 
codimension > 1 ; so there exists a hyperlane II . 2  (Fa , F6). In view of Re
mark 3.2, we have

IT H W d — Fa +  Fb +  Fai +  • • • +  Fa/ +  S ,



A. L an teri e M. P a lle sch i, On k-dimensional elliptic scrolls 411

where Ffll , • • - , ¥a. are fibres of Wd and S is an elliptic (k —- i)-scroll of degree 
d — 2 — i. Suppose S is contained in Pn (and not in any hyperplane of its). 
By induction

(4.3) n < d  — 2 — i — I .

Denote by L =  (S , Fa i, • • •, Fa. , Fa) the linear span of S and Fa i, • • •, Fa. , Fa. 
Remark that S cuts out on each fibre F of W d the P^~2 which is the corre
sponding fibre of S; there follows that dim L <  n +  i +  1;. recalling (4.3), 
dim L <  d  — 2. So there is a pencil ( n ^ ePi of hyperplanes Ut cz Vd through 
L, at least. Such a IIt intersects W d along

S + Fai H-----h Fa. + Fa + R ,

where R is nothing but a fibre of W^, by Remark 3.2. So it is defined a non
constant morphism from P1 to the elliptic base B of Wd. This is absurd.

In case (c), in order to exclude the varieties W^cz Ÿd (d =  2 k — 1) con
sider a hyperlane II containing a fibre F of W d and the corresponding section 
Il O =  F +  S ; by Remark 3.2, S is either a (k — i)-scroll or a (k — 1)- 
scroll plus some fibres Fa i, • * •, ¥a. . The latter case does not occur : otherwise 
the fibres Fai and F , contained in II =  P2*-2, should meet. Suppose S is 
contained in Vn (and not in any hyperplane of its). As S has degree d —- 1, 
by induction we have n <  d  — 2 (3); hence there exists a pencil { II^ePi of 
hyperplanes II) c: P  ̂ through the Fn containing S. Such a IIt intersects W d 
along S -fi- R , where, by Remark 3.2, R is nothing but a fibre of W d. Thus 
we can conclude, as in case (b).

There follows immediately

Remark 4.1. Let W be an elliptic /é-scroll and H' a general hyperplane 
section of its. Then H' and each other general characteristic cycle of | H' | 
is not linearly normal.

Let W dŒïFn be a smooth /è-dimensional linearly normal variety (/è >  2) 
of degree d  with elliptic curve sections. If W d is a ^-scroll, Theorem 4.1 
shows that n =  d  —  1. On the other side if n =  d — 1 and k >  3, W d can 
be neither a cubic hypersurface nor a rational variety (see Remark 3.1). 
Hence, by Theorem 3.1, W d is an elliptic /é-scroll. The same conclusion 
holds if k =  2 (cf. [6] Corollary 3.1). So we can state

THEOREM 4.2. Let W d cz P n be a k-dimensional linearly normal smooth 
variety ( k > 2 )  of degree d  with elliptic curve sections. Then W d is an elliptic 
k-scroll i f  and only i f  n =  d  -— 1.

5. -  As we already said the number of possible varieties occurring in 
case it) of Theorem 3.1 decreases as the dimension k of the variety increases. 
On the contrary here we show that the degree d  of the varieties possibly

(3) Really it is n = d — 2; otherwise two fibres of S should meet.



412 Lincei -  Rend. Se. fis. mat. e nat. -  Vol. LXVIII -  maggio 1980

occurring in case in) of Theorem 3.1 must satisfy the bare condition 
d > 2 k +  I and that for every admissible d  there exists an elliptic iè-scroll 
of degree d. This latter fact will be proved by exhibiting an explicit 
projective model. We start with the following

PROPOSITION 5.1. Let W dcz P ^ 1 be an elliptic k-scroll (k >  2; of degree 
d\ then d  >  2 k +  1.

Proof. This fact is trivial for k =  2. Let us continue the proof by 
induction on k. By absurd, let W ^ P ^ “1 be an elliptic >è-scroll of degree

(5.1) d  <  2 k +  I .

Consider a fibre F of W d, a hyperplane II containing F and the corresponding 
section

(5.2) n n wd =  F +  s .

By reasoning as in the proof of Theorem 4.1 (Step 2, case (c)) we conclude 
that S is an elliptic (k — 1)-scroll of degree d — 1. Consider the linearly 
normal ( k — i)-scroll S' of degree d — 1 embedded by the complete linear 
system of the hyperplane sections of S. By Theorem 4.2, S' is contained in 
j>d-2. SOj b y induction, d —-1 >  2 ( £— 1) -f 1. Recalling (5.1) it can only 
be d  — 2 k. In this case consider the (k —  i)-scroll S in (5.2) and let L be a 
PA~h =  P* containing the fibre F. By applying repeatedly Remark 3.2 we 
see that LO S contains an elliptic curve C, isomorphic to B, which must be 
a section of W d (ip the sense that C intersects each fibre in one point only). 
But as F is a hyperplane in L, Card (C fi F) =  degC, and deg C >1, C being 
elliptic.

The bound given by Proposition 5.1 is as best as possible. In fact, for 
each k >  2, we are going to construct an elliptic ^-scroll of degree d  =  2 k +  1. 
This construction generalizes the one given in [5] for the quintic elliptic 
2-scroll in P4.

In P2* consider k distinct 2-plahes 7zi (i =  1 , • • - , k) pairwise intersecting 
in a single common point p0 and spanning the whole P2*. Consider also an 
elliptic curve B and k distinct points bx ,• • - , bh of B such that each bi — bj 
{i , j  — I , • - , k ; i 7  ̂j )  is not of order three, i.e.

(5-3) 3 —

Let : B > (i =  1 , • • • , k) be a closed immersion such that Y]i (£$) =  p0,
(i — I , • • - , k), and denote by Bi the elliptic cubic curve v)i(B). For each 
b G B , b bi consider the P*-1

Fft =  (’ll {à) , t]2 (b +.bi — èj) , ■ • -, t\h (b +  bk — b̂ j)( 5-4 )
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spanned by the independent points {b. +  bi — e (i — 1 , • • •, k). 
Consider also the map

® : B \{ 4} —>• Grass (k — 1 ,2 k)

which takes values in the GraLsmann manifold of the P*-1’s in-P2*, defined 
by ® (b) =  Fb. Denote by ® its extension to B and put

( 5 -5) F &! — ®  ( p i )  •

LEMMA 5.1. I f  b , b' g B are two distinct points, then F&fi F&/ == 0 .

Proof. i) Suppose b } b' e B \{ 4 }- Put p i =  ^  (b +  bi — bx) and 
pi =  y\i(br +  bi — bf) , (i =  I , • • •. k). There results

F b=  ( A r - ,  PÙ and F&, =  (p[ , • • •, pic) .

By absurd, suppose F&fi Fft/ 9^0 ; there follows

(5.6) ' dim (Fb , F&/) <  2 k — 2 .

Let li be the line {p i, pi) and suppose such lines are pairwise skew. The 
linear span Si>2 =  (4 , 4) has dimension 3. Moreover Si,2c  f a  , 7t 2) ; so 
Si, 2 H /3 , which is contained in (tci , 7t2) O tc3 =  .{̂ 0} » ls either empty or redu
ced to p0. But the latter case can not happen and so

(5.7) Si,2n / 3 =  0 .

In fact, if Si,an / 3 =  {po} , then there were two lines /3 and 4 (or /2) through 
p0i contradicting our assumption; to see this it is sufficient to prove that if 
Si,2 9 po then 4 (or /2) itself contains p0. In fact, as dim Si,2 =  3 , Si,2 cannot 
contain 7Ui Ü 7t2. S o  it cuts out on one of them (4), suppose tci, the line 4 - But 
4 intersects the cubic curve Bt in px , p x and in a further point which must 
be po, as p0e§i,2]  hence p0e l x. Thus (5.7)' is true and then Si,2,3 =  
— (Si,2 , 4) =  (4 , 4  > 4) has dimension 5. By repeating the same argument 
we conclude

(5.8) dim <4 , 4  , • • -, 4} =  2k — I .

As (Fb F&/) =  (4 >’ **>4 )> (5-8) contradicts (5.6). Thus the lines 4 cannot 
be pairwise skew. Suppose 4 0 / ^ 0  ; it must be 4 Gl 4 =  {p0}, and so the 
triple po , p i , pi (respectively p0 , p$ , pj) is collinear on B̂  (respectively on 
B̂ ). This means that the pair b -)- b{ — bx , b' +  4  — 4l must belong to the

(4) It could be seen (cf. the following part of this proof) that if p 0 eS12 and Si2 7) Ti] 
then S1>2D7t2.
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gl defined by bi on B and that the pair b +  b5 — bx, b' +  b$ — bx must belong 
to the gl defined by bj on B. Therefore it must be

b T~ bi — b1 +  V  +  bi — bi +  bi =  o , b +  bj — bx b +  bj — 1̂ +  ^  =  0.

But such relations cannot hold together by the assumption (5.3).

ii) Suppose b '=  bv Assuming, by absurd, F6H F &/ 7^ 0 , reasoning 
similarly to the case i) and taking into account (5.5), one sees that the relations

b +  bi — b1 +  2 bi =  o , b 4" &j — bi +  2 bj =  o

must hold together for some r a n d  j  ( i f i j ) .  Again this contradicts (5.3). 
Now put

(5-9; W =  (J F6 ;
be  B

there holds the following

PROPOSITION 5.2. W is an elliptic k-scroll over B embedded in P2X? and 
of degree d — 2 k +  1.

Proof. By construction and Lemma 5.1 it follows immediately that (5.9) 
defines an elliptic /^-scroll (over Bj W c  P2X?; we prove by induction that it 
has degree d  == 2 k +  1. For k =  2, W is the quintic elliptic 2-scroll in P4 
(cf. [5], Prop. 5.1). Otherwise consider a hyperplane II cz P2* containing the 
planes 7̂  , • • - , nk̂ 1. The hyperplane II cuts out on the cubic curve Bj. the 
point pQ and two other points px and p2. Hence W O II is constituted by the 
two fibres of W through px and p2 and by the (k — i)-scroll S generated by 
the cubic curves Bj B ^  (in the same way as W is generated). So 
deg W =  2 +  deg S , and by induction on S we conclude.

T̂ he previous construction can be generalized and gives a model of an 
elliptic yé-scroll of degree d  for each d  >  2 k +  1. Replace the 2-planes 71* 
(i =  I , • • - , k) by linear spaces L* of dimensions ri {ri >  2) contained in Pr 
(r =  pairwise intersecting in a single common point p0 and generating
the whole Pr. Replace the cubic curves B̂  by elliptic curves of degree r% +  1 
isomorphic to B via closed immersions y ^ .  Define the (k —  i)-linear space F& 
as in (5.4). Lemma 5.1 continues to hold and so a formula analogous to (5.9) 
defines a variety W which is easily seen to be an elliptic k-scroll over B of degree

h
d ^ y r .  +  i =  r  +  I contained in Pr.
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