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Geometria algebrica. — On A-dimensional elliptic scrolls ©.
Nota di Antonio LanTERI € MARINO PALLESCHI ¢, presentata ¢
dal Corrisp. E. MARCHIONNA.

RIASSUNTO. — Le variet algebriche proiettive complesse, non singolari, di dimensione
% > 3 (grado d > 3), a curva sezione ellittica, o sono razionali o sono fasci ellittici di spazi
lineari. '

Le varietd del primo tipo sono state studiate e classificate da Enriques (cfr. [2], [3])
e Scorza (cfr. [8]); alle varietad del secondo tipo & dedicata la presente Nota.

Si illustrano alcune proprieta delle varieta fibrate in spazi lineari su di una curva ellit-
tica, e si studiano i loro modelli linearmente normali W. Indicati con & e £ il grado e la dimen-
sione di una siffatta W e con 7.la dimensione del minimo spazio di appartenenza, si dimostra
che d > 2£ + 1, d = n— 1. Infine, assegnata la curva ellittica base, si costruisce un mo-
dello esplicito di una W del tipo considerato per una qualunque dimensione £ e per un qua-
lunque grado 4 > 2& 4 1.

1. — This paper is concerned with £-dimensional projective irreducible
and complex algebraic varieties with elliptic curve sections with special regard
to 4-dimensional elliptic scrolls.

The £A-dimensional varieties W < P* with elliptic curve sections were
studied by Castelnuovo (cf. [1]) for 2= 2, Enriques (cf. [2], [3]) for 2= 3
and Scorza (cf. [8], [9]) for 2= 3. Substantially they show that such
varieties (but cones and cubic hypersurfaces) are either elliptic pencils of
P#*1's or rational varieties.

The rational case is deeply analyzed in the previously quoted works by
Enriques and Scorza (see also [7], pp. 59-60).

The present paper is devoted to the study of the elliptic case (not
developed in the classical works).

Specifically here we consider an irreducible smooth £-dimensional (2> 3)
complex algebraic variety W < P* with elliptic curve sections. In sec. 3 we
notice that if W is neither a rational variety nor a cubic hypersurface, then it
is an elliptic 4-scroll. In sec. 4 we show that the linearly normal models of
such W’s are varieties of degree 4 in P%?! (non-hyperplane). We complete
this result by proving (Theorem 4.2) that a 4-dimensional (£ > 2) linearly
normal variety Wy P of degree 4 with elliptic curve sections is an elliptic

(*) Lavoro eseguito nell’ambito dell’attivita del G.N.S.A.G.A. del C.N.R.
(*¥*) Istituto matematico « F. Enriques» — Via C. Saldini, 50 — Milano.
(*¥*%) Nella seduta del 10 maggio 1980.
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A-scroll if and only if # =4 —1. In sec. 5 we prove that an elliptic &-scroll
(£ =2) Wy P! has degree 4 >2% + 1, and we show that for every
admissible & there exists an elliptic £-scroll of degree &, by constructing an
explicit model of it.

2. — From now on, the word variety will always mean irreducible com-
plex projective algebraic variety. Such a variety of dimension 2=1 or
# = 2 will be called curve or surface respectively.

Let V be a smooth variety of any dimension 4, and |D| the complete linear
system associated to a divisor D on V. We shall denote by @y the structural
sheaf of V; by 0y (D) the invertible sheaf associated to D; by 42 (0y (D)) = 42 (D)
the complex dimension of the g-th cohomology vector space HY(V, 0y (D)) =
= H?(0y (D)). In the case £ > 2 consider an irreducible and smooth hyper-
surface S on V; it is known that there exists a divisor D’ on V, linearly equi-
valent to D (briefly D’ = D) which does not contain S as a component and is
transversal to S. By D-S we denote the divisor on S (defined mod linear
equivalence) which D’ cuts out on S. For 2 = 2 the symbol (D -C) represents
the intersection index of the divisors D and C on the surface V; if D =C,
we also write (D-C) = (C?).

Now let B be a smooth curve and P the »-dimensional complex projective
space. From now on, by saying that a variety V is contained in Pr (or by
writing V < P*) we mean that V is in P7 but not in any hyperplane of its.

A k-dimensional scroll over B (briefly a k-scroll) is a smooth variety V
embedded in some P’ endowed with a morphism 7:V —B such that
Fp=m"1(6) is a P¥, for each 6 € B . If B is an elliptic curve, such a V is
said an elliptic 4-scroll.

Finally we introduce some other notations occurring in the sequel.
On a /k-dimensional smooth variety V consider a very ample divisor H. Ob-
viously it is always possible to choose Z (4 =1, -+, £—1) smooth irreducible
hypefsurfaces H!, H?,..., Hi, belonging to | H |, pairwise transversal and
such that the (&-—2)-dimensional algebraic characteristic cycle H,_; = H'O
N H2N ... NH? (defined by intersecting these ¢ hypersurfaces) is irreducible
and smooth. We denote also by E the characteristic cycle Hy.

By means of well-known facts holding for complex smooth varieties,
some standard cohomological calculations (see [4], sec. 2) give

Remark 2.1. 1f k>3 and A (Oy,) = o, then 4% (Oy (H)) = /4 (0x, (E)) +
+ £ —2.

. Remark 2.2. Suppose k=3 and A'(On,) =1, h*(On,) = #* (On,(E))=o0.
Then 4° (0y (H)) = 4° (On, (E)) + 5, where 0 <s <% —2.

(1) Remark that a 4-scroll is a model of the projectivized Proj (&) of a vector bundle &
of rank £ over B.
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3. — In [8] G. Scorza studied the A-dimensional varieties W < P* with
elliptic curve sections. If such a variety W is not a cone and if deg W > 3,
then he shows that W must be either a rational variety or an elliptic pencil
of P*1’s, Now, recalling the notations introduced in sec. 2 and denoting by
®y; the closed immersion defined by |H|, this result can be restated as
follows.

THEOREM 3.1. (Enriques—Scorza). — Let V be a l-dimensional smooth
variety (k = 3) endowed with a very ample linear system |H | the general cha-
racteristic 1-cycle ¥. of which is an elliptic curve. Then only the following cases
can occur:

7) V is isomorphic, via Qu, to a smooth cubic hypersurface of P¥1;
i) N is a rational variety,

iit) NV is isomorphic, via Oy, to an elliptic k-scroll over E.

Another proof, different from the original one, can be feund in [4].

Remark 3.1. If E is an elliptic curve, the 2-dimensional characteristic
cycle H, is either a rational surface or it is isomorphic to an elliptic 2-scroll
(Castelnuovo [1]; for a different proof working over any algebraically closed
field see also [6], Theorem 3.1). From the proof of Theorem 3.1 in [4], one
sees that the former case corresponds to #) and #), whilst the latter case cor-
responds to 72Z). In the former case Remark 2.1 shows that the linearly normal
models W; = ®y (V) of the V’s occurring in case #7) are varieties of degree
d = (E? in P2

For the sequel we need also the following

Remark 3.2. Let Wa P* be a k-scroll (£ = 3) over a (smooth) curve
B and let H' be a hyperplane section of its. Then there happens: either 7)
H' is a (&£— 1)-scroll over B, or 2) H' = Iy +---+4 F, + S where Fy, is a
fibre of W and S is a (£ — 1)-scroll over B @, (cf. [4]).

4. — Theorem 3.1 is particularly meaningful when H is a general hyper-
plane section of a smooth 4-dimensional variety W < P2, In this case it says
that a smooth variety W; < P® of degree & > 3 with elliptic curve sections is
either a rational variety or an elliptic £-scroll. The rational case (case 7Z) of
Theorem 3.1) has been studied, for £ = 3, by Enriques in [2] (see also [3]).
He proved that the linearly normal models of the rational threefolds with
elliptic curve sections are varieties W; < P! of degree 4 (4 <d < 8) repre-
sentable on P? by a linear system of quadric or cubic surfaces. For 2 > 3,
the linearly normal models in the rational case have been studied by Scorza
(cf. [8]). They are, for £=4, a Wy P?, and a Wec P8 for =75, a

(2) In a sense this Remark has a converse (see [4], Prop. 3.1); it could also be easily
proven (cf. the following Theorem 5.1) that 1 <7 < deg W — 24 + 1.



410 Lincei - Rend. Sc. fis. mat. e nat. — Vol. LXVIII — maggio 1980

W; < P8; for £ = 6 the Grassmannian W, < P? and, for each £ > 3, there is
always the complete intersection W, < P*¥2? of two quadrics.

This sec. is meanly devoted to the analysis of elliptic 4-scrolls, i.e. we
are dealing with the case #7) of Theorem 3.1.

Now consider a #4-dimensional smooth variety V (£ >2), a complete
very ample linear system |H | on V, and its characteristic cycles H, and H, = E.
From now on suppose E is an elliptic curve; so we know (cf. [6]) H, is either
a rational surface or an elliptic geometrically ruled surface (to wit it is
isomorphic to an elliptic 2-scroll). From now on suppose also we are in the
latter case; so, if £ 3 all we said in Remark 3.1 implies that ke variety
Wy = ®u (V) is a lincarly normal elliptic k-scroll of degree d = (E?); note
that this conclusion holds also for £ =2 (cf. [6]). It is known (cf. [6],
p- 91) that

(4.1) 0 (Osy (B)) = d

and /! (0y, (E)) = 0; moreover, as H, is supposed to be an elliptic ruled sur-
face. if 2> 3, we can apply Remark 2.2. and conclude that

(42) 7Oy (H) =d + 5,

where 0 < s <<k —2. So, a priori, Wy is a linearly normal #-scroll of degree
d in P31 Really, for each 2>2 (if £ =2 see (4.1)), we can prove the
following

THEOREM 4.1. W, is contained in P41 (ie. s = 0).

Proof. In case £ =2 our thesis follows immediately from all we
said; so we prove the theorem by induction on 4.

Step 1. There results s < 1. By Remark 3.2 the general hyperplane
section of W< P41 is an elliptic (£ — 1)-scroll H;c P#*2% of degree 4.
Were H; linearly normal, the dimension of the corresponding embedding
space should be #» = & — 1, by induction; if not, it would be » <d —1. So
we must have n =d +s —2 <d-—1.

Step 2. There results s = 0. By absurd suppose s =1, i.e. Wy P2

We are proving this fact can not occur by . analyzing the following three
cases:

(@) d<2k—1; (8 d=2k; () d=2k—1.

In case (2) the thesis is trivial; in fact two distinct fibres F; = P¥1 and
F, = P¥1 of W, generate a P#-1,

In case (4) the linear span (F,, F,) of two fibres F, and F, of W; has
codimension > I; so there exists a hyperlane II 2 (F,, F;). In view of Re-
mark 3.2, we have

Han:Fa+Fb+Fu1+"'+Fa,-+S:
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where F, -+, Iy, are fibres of W, and S is an elliptic (£ — 1)-scroll of degree
d —2 —14. Suppose S is contained in P” (and not in any hyperplane of its).
By induction ‘

(4.3) n<d—2—7i—1.

Denote by L = (S, F,, ,-- -, F,,, Fp) the linear span of Sand F, ,---, F,,, F,.
Remark that S cuts out on each fibre F of W, the P*2 which is the corre-
sponding fibre of S; there follows that dim L < 4- 7 4 1; recalling (4.3),
dimL <& —2. So there is a pencil {II};.p1 of hyperplanes II, < P¢ through
L, at least. Such a II, intersects W, along

S+Fa1+"'+Fai+Fa+R)

where R is nothing but a fibre of W;, by Remark 3.2. So it is defined a non-
constant morphism from P! to the elliptic base B of W,;. This is absurd.

In case (¢), in order to exclude the varieties Wy P¢ (d = 2 £ —1) con-
sider a hyperlane II containing a fibre F of W; and the corresponding section
NNW;=F+S; by Remark 3.2, S is either a (#—1)-scroll or a (& — 1)-
scroll plus some fibres F,, ,- -+, F,,. The latter case does not occur: otherwise
the fibres F,, and F, contained in II = P?-2 should meet. Suppose S is
contained in P* (and not in any hyperplane of its). As S has degree 4 —1,
by induction we have # <d—2 ®; hence there exists a pencil {II};.p1 of
hyperplanes II, < P¢ through the P» containing S. Such a II, intersects W,
along S + R, where, by Remark 3.2, R is nothing but a fibre of W;. Thus
we can conclude, as in case ().

There follows immediately

Remark 4.1. Let W be an elliptic £-scroll and H’ a general hyperplane
section of its. Then H’ and each other general characteristic cycle of | H' |
is not linearly normal.

Let W,;<:P* be a smooth £-dimensional linearly normal variety (£ >'2)
of degree & with elliptic curve sections. If W, is a A-scroll, Theorem 4.1
shows that # = d — 1. On the other side if # =d-—1 and 2> 3, W, can
be- neither a cubic hypersurface nor a rational variety (see Remark 3.1).
Hence, by Theorem 3.1, W, is an elliptic 4-scroll. The same conclusion
holds if £ = 2 (cf. [6] Corollary 3.1). So we can state

‘THEOREM 4.2. Let Wy P be a k-dimensional linearly normal smooth
vartety (k== 2) of degree d with elliptic curve sections. Then W, is an elliptic
k-scroll if and only if n=d— 1.

5. — As we already said the number of possible varieties occurring in

case #) of Theorem 3.1 decreases as the dimension % of the variety increases.
On the contrary here we show that the degree & of the varieties possibly

(3) Really it is # = d — 2; otherwise two fibres of S should meet.
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occurring in case i) of Theorem 3.1 must satisfy the bare condition
d>2k -+ 1 and that for every admissible 4 there exists an elliptic 4-scroll
of degree 4. This latter fact will be proved by exhibiting an explicit
projective model. We start with the following

PROPOSITION §.1. Let Wy P41 be an elliptic k-scroll (k = 2) of degree
d; then d >24k -+ 1.

Proof. This fact is trivial for &£ = 2. Let us continue the proof by
induction on 4 By absurd, let W;< P4 be an elliptic £-scroll of degree

(5.1) d<2k—+1.

Consider a fibre F of W, a hyperplane II containing F and the corresponding
section

(5.2) MIAW,=F +S.

By reasoning as in the proof of Theorem 4.1 (Step 2, case (¢)) we conclude
that S is an elliptic (£ — 1)-scroll of degree 4 — 1. Consider the linearly
normal (& — 1)-scroll S’ of degree d — 1 embedded by the complete linear
system of the hyperplane sections of S. By Theorem 4.2, S’ is contained in
P?-% so, by induction, d —1 > 2 (£ —1) + 1. Recalling (5.1) it can only
be d = 2 £ In this case consider the (£ — 1)-scroll S in (5.2) and let L be a
Pi-% — P% containing the fibre F. By applying repeatedly Remark 3.2 we
see that L NS contains an elliptic curve C, isomorphic to B, which must be
a section of W, (in the sense that C intersects each fibre in one point only).
But as F is a hyperplane in L, Card (CN F) = degC, and deg C >1, C being
elliptic. )

The bound given by Proposition 5.1 is as best as possible. In fact, for
each £ > 2, we are going to construct an elliptic £-scroll of degreed = 2 2 + 1.
This construction generalizes the one given in [5] for the quintic elliptic
2-scroll in P4

In P% consider 4 distinct 2-planes m; (z = 1 ,-- -, £) pairwise intersecting
in a single common point p, and $panning the whole P%. Consider also an
elliptic curve B and # distinct points 4, ,- -, &, of B such that each 4; —4;
(¢.7=1,+,k;7%7) is not of order three, i.e.

(5-3) 3(bi—8) Fo @G j=1, ki F)).
Let ,:B —-m; (¢ =1,---, %) be a closed immersion such that w; (6;) = g,
(=1, -+, %), and denote by B; the elliptic cubic curve %;(B). For each
be B, b7 b; consider the PF-1

(5-4) Fp = (m (&) »7)2(& + b —0by) M (Bt by — b))
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spanned by the independent points (6 4+ 6, —6)€EB;, (i =1,---, k).
Consider also the map

O BN\{4} >Grass(£—1,24)
)

which takes values in the Grassmann manifold of the P*¥1’s in P* defined
by @ (4) = F,. Denote by ® its extension to B and put

(5-5) Fy, = [ (&) -

LEMMA s.1. If 6,6 € B are two distinct points, then F,O\Fy = 0.

Proof. i) Suppose b,8 € B\{b}. Put p,=m;(6+ b;—b) and
pi=n; (6" +b;—b),(GE =1, - k). There results

Fy=(pr, - and  Fy={(p1, - pa) .
By absurd, suppose F,N Fy 7= @ ; there follows
(5.6) dim (F, , Fy) <2/4—2.

Let /; be the line (p;, #i) and suppose such lines are pairwise skew. The
linear span Sy = (4, %) has dimension 3. Moreover S;.< (m, 7y) ; SO
S1,2 N7y, which is contained in (m, , 7)) N 7z = {po} , is either empty or redu-
ced to p,. - But the latter case can not happen and so

(5.7) ' 7 S$1,6Nl3 =& .

In fact, if S1,oN /% = {#o} , then there were two lines /; and /, (or Z) through
9, contradicting our assumption; to see this it is sufficient to prove that if
S1,22 po then /; (or 4) itself contains p,. In fact, as dim S;,5 = 3, 54,5 cannot
contain m; U'n,. So it cuts out on one of them @, suppose 7, the line 4. But
/, intersects the cubic curve B, in p,, 1 and in a further point which must
be po, as po€ Si,2; hence pye /. Thus (5.7) is true and then Sy ,35=
= (S1,2,4) = (4,4, /5y has dimension 5. By repeating the same argument
we conclude

(5.8) dim</1,12,~-',lk>=2é——-l.

As (Fy, Fy) = (4, 4y, (5.8) contradicts (5.6). Thus the lines /; cannot
be pairwise skew. Suppose /;N/; # @ ; it must be ;0 /; = {po}, and so the
triple 2y, 25, p; (respectively py, p;, p;) is collinear on B; (respectively on
B;). This means that the pair 6 4 6; —6,, 6" + b; — 4, must belong to the

(4) It could be seen (cf. the following part of this proof) that if py€S;,and Sy, 2 7,
then S, 3O m,.
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g: defined by 4; on B and that the pair & + é; — 4, , 4’ + b; — &, must belong
to the g3 defined by 4; on B. Therefore it must be :

b4 by—b+ b +b—b +b=0,b4b—b+b+b—b+b=0.

But such relations cannot hold together by the assumption (5.3).

i) Suppose & = &. Assuming, by absurd, FyNF, 7 &, reasoning
similarly to the case ¢) and taking into account (5.5), one sees that the relations

b+b—b+2b=0 , b+b—b+24=0
must hold together for some 7 and j (¢ 5%7). Again this contradicts (5.3).
Now put
(5.9) W =) Fy;

beB

there holds the following

PROPOSITION 5.2. W is an elliptic k-scroll over B embedded in P¥* and
of degree d =24k + 1.

Proof. By construction and Lemma 5.1 it follows immediately that (5.9)
defines an elliptic £-scroll (over B) W < P#; we prove by induction that it
has degree d =2 % + 1. For £ =2, W is the quintic elliptic 2-scroll in' P4
(cf. {51, Prop. 5.1). Otherwise consider a hyperplane Il = P# containing the
planes m ,---, ;. The hyperplane II cuts out on the cubic curve By the
point p, and two other points p; and p,. Hence W 1I is constituted by the
two fibres of W through p, and p, and by the (£ — 1)-scroll S generated by
the cubic curves B, ,---, By (in the same way as W is generated). So
deg W = 2 4 deg S, and by induction on S we conclude.

The previous construction can be generalized and gives a model of an
elliptic 4-scroll of degree & for each 4 > 24 4 1. Replace the 2-planes =;
(¢=1,-+-, £) by linear spaces L; of dimensions 7;(»; = 2) contained in P~
(r = Z7;), pairwise intersecting in a single common point p, and generating
the whole P7. Replace the cubic curves B; by elliptic curves of degree »; + 1
isomorphic to B via closed immersions v;. Define the (£ — 1)-linear space F,
as in (5.4). Lemma 5.1 continues to hold and so a formula analogous to (5.9)
a’eﬁnes;c a variety W which is easily seen to be an elliptic k-scroll over B of degree

d = z s +1 =741 contained in P.
$=1
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