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Equazioni differenziali ordinarie. — On the ¢-Stability for
differential systems. Nota di OLusoLA AKINYELE, presentata © dal
Socio G. ZAPPA.

R1ASSUNTO. — L’Autore da le definizioni di ¢-stabilitd per sistemi di equazioni dif-
ferenziali e da condizioni sufficienti perché queste stabilita abbiano luogo.

§ 1. INTRODUCTION

The most important technique to date in the theory of non-linear diffe-
rential equations is the second method of Lyapunov. The method has been
widely used to study differential systems of various kinds including functional
differential equations and differential equations in abstract spaces. Further-
more, the power of the applications of differential inequalities together with
Lyapunov’s second method was demonstrated in the book of Lakshminkan-
tham and Leela [7]. Several other authors [2, 4, 5, 6, 8, 9] have validated
the possibility of applying this method including their modifications and
generalizations for various problems of stability and boundedness of dif-
fential systems. Sometimes [4, 5] whenever a new type of stability was
introduced, a modification or generalization of the known basic comparison
result was required to study such stability concepts.

In this work, in §2 we introduce new definitions of ¢-stability for dif-
ferential systems which include definitions of the Lyapunov stability and
several other known generalization of Lyapunov stability. To study these
new stability concepts we develop also in §2 a new comparison principle
which is of a very general nature and includes as special cases well-known
comparison results and their generalizations. In § 3, employing our com-
parison theorem and differential inequalities we finally give sufficient conditions
for our concepts of stability to hold. Our results contain as spec1al cases some
well-known results of [1, 3, 7].

§ 2. BASIC DEFINITIONS AND NOTATIONS

We shall consider the system of differential equations
dx ;
(1) a4 =/ x (Zo) = %o

where f€C(R+xXR"” R"). Here R*= [0, c0), R* denotes the Euclidean
n-space and C (R*tXR™ R7?) the class of continuous functions from R*XxR"

(*) Nella seduta del 12 aprile 1980.
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to R®% TFor any p>o0 let S;={xeR":| x| < o}, -] being any norm
on R®. In what follows we assume conditions on f which guarantee the exi-
stence and uniqueness of solutions of (1) and that f(z,0) =o.

DEFINITION 2.1. A function « belongs to class & if «€C(Jo, p), R+)
such that « (#) is strictly monotone increasing in » and « (0) = o.

DEFINITION 2.2. A function v (¢,7) belongs to the class A x X if
neC(R+*x[o, ), RT),ne A for each 7€ Rt and v is monotone increasing
in # for each » >0 and % (¢,7)—> 00 as #—> 0o for each » > o.

DEFINITION 2.3. A function ¢ is said to belong to class 2 if ¢ is a con-
tinuous function defined on R*X R” into R® which is monotonically increasing
and partially differentiable in the variable # on R* for each x € R” such that
@(¢t,-)=>1 for 0 <¢ < o0, lim 9(#, -) exists and lim ¢ (¢, -) =C >1 where
C is a real number. e t>eo

DEFINITION 2.4. The trivial solution x = o of the system (1) is said to be

9S;:  @-equistable if given any &> 0, #, € R+ there exist a positive function
3 = 3 (%, ¢) that is continuous in #, for each &, a positive number A
and ¢ € 2 such that for any solution x(¢,%,,x,) of the system (1)

Il @ (2o, 20 |l <3
implies
lo(,x(z,2, x)) || < Ae, t>4;

9S,:  ¢-uniformly stable if the 8 in ¢S; is independent of z,,

9Sg: @-quasi-equi asymptotically stable if for each ¢>o0,#%€ R+ there
exist positive numbers 8, = 8,(%),A>0,T =T (¢ ,¢) and 9€2
such that for z >¢, + T,

| o (o, %) | < 8
implies
”<P(t’x(;;to’x0))”<As’

Ss: @-quasi uniformly asymptotically stable if 3, and T in ¢S; are inde-
pendent of 4,

9Sg: @-equi asymptotically stable if 9S; and ¢S; hold together;

¢S @-uniformly asymptotically stable if ¢S, and ¢S, hold together.

Remark 1. If for o€ D, 0 (2,2 (t,%,%,) = x (2,25, %,), then ¢S,—S;
become Lyapunov stability, [cf. 7].

Denote by ¢ the class of functions % € C (R+, R*) such that 4(#) is mono-
tonically increasing and differentiable in R+ such that 42(¥) > 1 for ze R*
and lim 2(#) =6 =1, 6 being a real number. If for o€ 2 and £ >o,

t—>o0
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p(t,x(t, 2%, %) = A () x(z, %, %) then definitions ¢S;—¢S; reduce to
stability with respect to % of degree £ [3]. If @ (¢,x (2, %, %)) = 2% (2, 4y, %)
n=0,1,2,-+,p where x™(¢,4,,x,) denotes the 7™ derivative of
x (¢, %, x,) then S,—S; reduce to stability of order p [3]. In general if
o (¢, x(5) zhk(z‘) 2™ (2,4, .x,) for £>0,2€% and n=0,1,2,---,p,
then ¢S;—¢S; reduce to stability with respect to the function % of degree £
and order p [3], where (1) has p-times differentiable solutions.

Definition 2.4 therefore generalizes many stability concepts including
Lyapunov stability.

THEOREM 2.5. (Generalized comparison theorem). Assume that

(i) VeCR+*XR® RY,V (2, x) és locally Lipschitzian in x for eack t€ R*,

(i) geC(R*XRH R), g(z,un) is nondecreasing in wu for each t€R* and
the maximal solution v (t,ty, uy) of the scalar differential equation

(2) %‘zg(x,u) () = 119 =0

exists to the right of t,,

(iii) for any solution x(¢,ty,x,) of (1) there exists @ € D whick is locally
Lipschiteian in x for eack t€ Rt and for (2,9 (t,x(2))€RtXR"

(3) DtV (¢, (¢,x) = llirr}) sup% [V (z‘—}—k,cp(l‘,x(t)—i—bf(z‘,x))+

+/zfg~ (z‘,x(tﬂﬁf(f,x))) —V<f,<9(¢,x(t>))] <
<g,V(E,o¢,x())-

Then if x (¢, 25, x,) is any solution of (1) existing for z = ¢#,, such that
V (ZO » @ (to : xo)) S %o then

V(l‘,(p(l‘,x(l‘,l‘o,xo)))Sr(t,z‘o,uo) for t =t .
Proof. For t>1, and ¢ <D define
m@y=V(t,9(&,x(¢,1%,%))
then, for /4 > o sufficiently small,
mE+m—m@) SLE+i)lloE+h,2¢+m)—e@+h,x@) +A ¢,
FLEEDoE R, 2 @) + (D) —o (2 A (¢, 2)

_h_aa?, (,x() + A, %)

FV b (5O F A D) e (62 (0 W (6 0) —V (0, 2(@)
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where L (#) is the Lipschitz constant of the function V. . Hence,

D¥om (1) < lim sup - L (¢ + /) M (¢ + /z)i|wz—_x—(t)—f(¢,x)u

+limsup L(s 4 ay) REEAD—e D) B,
h—>0 Y3 of

+DtV(, 9@, 2()) <o+o+g(,m@)

for # > #, and where M (¢) is the Lipschitz constant of the function ¢ and z= x(¢) + &1 (£, x).
An application of Theorem 1.4.1 of [7] yields,

Vi, 0, 2(2,4,x)) L7, 4, %) for 22>4¢.

Our result includes the well-known comparison theorem as a special case if we take
@ (¢,x () =x(#). It also includes the £# degree comparison theorem of [1] if we take
@ (¢, x(8) = @) x(2), with >0 and ~e@. In actual fact even though the result of [1]
was proved for £ > 1, the same proof carries over for the case 0 < £ < 1.

Another useful version of the generalized comparison theorem is:

THEOREM 2.6. Let all the hypothesis of Theorem 2.5 hold except that instead
of (3) we have

DrV@E, o, x@)+Qlle¢, 2Nl =gC, 0@, x(®)

Sfor (2,9 (¢, x () € Rt XR™, where O () > 0 is continuous for r >0 ,P(0)=o0
and @ (7) is strictly increasing in 7.

Then V (¢, ¢ (¢, %) < #u, implies

V(t:<P(¢:x(fyto»xo>>>+J"(D(”<P(3:x(-“)>|])d5S7<t»to»”o)’ t = 4,.
ty

f § 3. SUFFICIENT CONDITIONS FOR @-STABILITY

Employing our main result in § 2 we now investigate sufficient conditions
for our new concepts of g-stability of the trivial solution = o of the system (1).

THEOREM 3.1. Assume that there exist functions V (¢,y) and g (¢, u)
satisfyving the following kypothesis;

i) geCR*XRY,R),g(t,0)=0 and g(¢,u) is nondecreasing in u
Jor each t€RT;

(i) VeC(R*xS,,R"),V(¢t,0)=0,V(2,y) is locally Lipschitzian in y
and there exist o € A and @€ D such that

«(le, D<=V (E,9@F,%) for (¢,9(#,%)€RXS,;
(iii) For (¢,9(¢,x))€ R*XS,,
DV, 9, 2x)<g¢ V¢, 9¢. 2)).
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Then (a) the equistability of the trivial solution of (2) implies the ¢-equi-
stability of the trivial solution of (1). (&) the equi-asymptotic stability of the
trivial solution of (2) implies the ¢@-equi-asymptotic stability of the trivial
solution of (1).

Remark 2. The definitions of the various stability properties of the
system (2) are as defined in [7].

Proof of Theorem 3.I. (a) Let A>o0,0<e<p and % eR* be given, then given
a (Ae) > 03 a positive function 3 = 3 (#,,¢) continuous in #, for each ¢, such that %, < 3
implies

w(t, 2y, uy) < o(Ag) t>1,

.where u (¢, 1,, #y) is any solution of (2). For ¢eD let uy="V (4, ¢ (4, %,)), then by (7%)
18, = 8, (#,,€) > o continuous in 7, for each & such that

le o, %)l <8  and V (4, ¢ (%,x) <3

hold together. We claim that the trivial solution of (1) is @-equistable. Suppose not, then 3
a solution x (¢) = x (¢,7y, xy) with || 9 (7, x)ll < 8 and £ > 7, such that

lo @t ,x@) I =Ac , lo@,z@)|<Ae for ze[zy,4].

Now if A > o is chosen such that o < Ae < p, then ¢ (#,%) €S, for 7 €[4, 4] and hence
Theorem 2.5 implies.

V@, e, x(2) <7(t,4,4), telty, 4]
where 7 (¢, 4y, #y) is the maximal solution of [2] existing for z > ¢,.
Lo(Ae) SV (H,0(,x(@) <7 (4,4, 4) < a(As)
which is a contradiction. Hence () holds.

v (6) By hypothesis given « (Ae) > 0,7, eR*, 3 positive numbers 3, = §,(4) and
T = T (4, ¢) such that for # > 74, + T,
u(t, 1y, 1y) < o(As)
|

whenever #, < 8;. Choose u,=V (4, ¢ (%, x,)) then 350 = 30 (%) > o such that
o (2, 20) 1| 8y and V (%, 9 (%, %)) < 8y hold together.

Let 8, = 3, (4 .p) and define &% = min {5,, 8,}, then [ ¢ (%, 2|l < & implies
e (2,2 ()| < Ae for all # > 7, by (@) hence Theorem 2.5 implies

Vg, @@, x@) <r(t,4,u) for £>4.
Let there be a sequence {4},%4 =7, + T and 4 — o0 as £Z— oo such that |
o @2 (Bt %) Il = Ae
where x.(¢,7%,,%,) is a solution of (1) such that |[¢ (7, %) ]| < 8%. Then
a(Ae) SV (4,0 (%, x (&) <7 (4,4, 1) <a(Ag)
which is a contradiction. Hence [[¢ (2,2 (7,4, %)) | < Ae¢ for # > 4, + T.

THEOREM 3.2. Assume that 3V (¢, ¥), & (¢, u) satisfying hypothesis (i)
and (iii) of Theorem 3.I. In addition let V€C (R+*xS,,R*),V (¢,0) =0,
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V(¢,y) is locally Lipschitzian in y and 30€ A XA o€ D such that for
(2,9 (2,x) € RTXS,,

oc(z‘,Hcp(z‘,x(z‘))”)SV(z‘,cp(t,x)).

Then the equistability of the trivial solution of (2) implies the ¢-equi-
asymptotic stability of the trivial solution of (1).

Proof. Let B(r) = «(0,7) then for (¢, ¢ (¢,7)) e R*XS,,
(4) Bllet, ) <V, 0(,%).

Let 0 <7 <p,% cR*. By hypothesis given 8 (A1) > 0,7, ¢ Rt where A > 0 such
that o <At <p,38 = 8 (4, 1) > o continuous in %, for each 7 such that #, < § implies
u(t, 2y, uy) <P(A7T),r>4. Choose uy=V (4,0 7, %)), then I = §;(%, ) as in
Theorem 3.1 such that || ¢ (4, %) || < & and V (%, (4, %,) < 8 hold together.

Using (4) and proceeding with the proof as in Theorem 3.1 (), the solution x = o is
¢—equistable. Let v be fixed and suppose 8, = 8, (%, 7). Choose 0 <e¢ << and % eR*
be given.

If lo(t, x)ll <8 ,axe XA implies 3T (4, €) such that

«(t,Ac) >sup V (2, ¢ (£, 7)) for >4+ T e (Zo, %) ll < 3.
Let {#} be a sequence of Theorem 3.1 (), then whenever || o (%, %)l < 3§,
@ (f, Ae) <V (5, 2 (W) <7 (%110, %) < B (A7)
which is a contradiction since « (%, ,Ae) - 00 as # —oo.

Hence x = o is ¢-quasi-equi-asymptotically stable. This along with ¢-equistability
implies # = o is ¢@-equi-asymptotically, stable.

‘We now state a few results which can be proved using standard arguments
modified along the lines of our proofs.

THEOREM 3.3. Let all the hypothesis of Theorem 3.1. hold. I[n addition
assume that b€ A for the same 9€ D suckh that

Vi, e, x)<ble, @)

Jor (£,0(,x)e R*XS,.

Then the uniform stability of the trivial solution of (2) implies the
p-uniform stability of the trivial solution of (1).

THEOREM 3.4. Assume that there exists N (¢, ) satisfying the following

(i) VeCR*tXS,,R",V(¢,y) s locally Lipschitzian in y and o, B € A,
© €D such that for (¢,9 (. x))€ R¥XS,,

a(le,n))=VE @) <pdle¢ 0,
(i) D*V{¢#,9(,x)<o0 for (¢,¢(z,x))€R*XS;.

Then the trivial solution of (1) is ¢@-uniformly stable.
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THEOREM 3.5. Let all the hypothesis of Theorem 3.3. hold. Then the uni-
Sorm asymptotic stability of the solution w = o of (2) implies the @-uniform
asymptotic stability of the trivial solution of (1).

Remark 3. Our results in this section include sufficient conditions for the
Lyapunov stability of the trivial solution ¥ = 0. In view of Remark 1 it also
include sufficient conditions for stability with respect to % of degree £> o, sta-

bility of order p and stability with respect to % of degree 2= o0 and order p.
In particular they include some results of [3].
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