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RENDICONTI
DELLE SEDUTE

DELLA ACCADEMIA NAZIONALE DEI LINCEI

Classe di Scienze fisiche, matematiche e naturali

Seduta del 12 aprile ig8o 
Presiede i l  Presidente della Classe A ntonio C a r r e lli

SEZIONE I
(Matematica, meccanica, astronomia, geodesia e geofisica)

Matematica. — On first Cech groups H°, H1 of maximal ideal 
spaces. Nota di E d oard o  B a ll ic o ,  A r tu r o  V. F e r r e ir a  e P ie r  
D a n ie le  N a p o lita n i, presentata <*> dal Corrisp. E. V e se n t in i.

RIASSUNTO. — Si stabilisce un rapporto fra i primi gruppi di coomologia dello spazio 
strutturale e la struttura algebrica di un’algebra topologica commutativa.

i. This note and [i] are the first of a series on the use of algebraic topo­
logy in the study of general topological algebras with various applications 
to complex analysis; next we will treat subjects involving the Chern character 
and Picard groups.

A will denote a complex unitary complete topological algebra whose 
topology can be defined by a system of algebra seminorms. Suppose ^  is a 
filtering system of algebra seminorms which defines the topology of A. For 
each p e jV '  we denote by Â , the completion of the normed algebra (A/kerp, 
j>/kerp), p  the norm on A^, and by t z v  the algebra morphism A —̂A^ that is 
obtained by composing the canonical epimorphism A —>• A/kerp and the 
natural injection A/kerp —>* A^. We have ker t z v  =  kerp and, if qe JT is finer 
than A the natural mapping A/kerq —* A/kerp extends as a (continuous) 
algebra morphism n v q : A q - ^ K p. As we will have t cp  = t z p q  ° n q , the system 
(Ap , npq) gives rise to a projective limit with which A can be identified because 
A is complete.

(*) Nella seduta del 12 aprile 1980.
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Let A* denote the group of invertible elements in A. When A* is known to 
be open (which is the case if A is Banach), if pe J f  is a seminorm for which 
some /-ball centered at 1 is contained in A*, then for each ae  A , sp& (a) is 
a compact subset of C equal to sphp {a) and therefore a £ A* whenever the 
spectral radius of a —1 in A  ̂ is <  1 ; in particular, the open /-ball centered 
at I o f  radius 1 is contained in A*.

In the sequel of the present note A will be supposed moreover commuta­
tive. Each closed maximal ideal is the kernel of a continuous complex cha­
racter on A by the Gel’fand-Mazur theorem, so that the weak*—dual A' 
induces on the set E (A) of closed maximal ideals a topology y (the Gel’fand 
topology) which is the coarser one that renders continuous Geh fand transforms 
â of elements a in A. On the other hand, the transposed mappings fnp : A  ̂—►A' 
are injective and therefore, if we identify each 2 (Ap), which is compact for 
its Gel’fand topology, with its image in 2(A) by lizv , we will obtain 
2 (A) — (J 2 (Ap). This enables us to consider on 2 (A) another useful

p eJT

topology X finer, and in general diiferent from Gel’fand topology—the 
inductive limit topology of the compact spaces 2 (Av). When A* is open in 
A (which is always the case if A is barrelled and 2 (A)Y is compact), there 
is /  in JT for which we have 2 (A)Y =  2 (A)x =  2 (A^)Y.

The Gel’ fand transform A is a (unitary) algebra morphism A ^ ^ ( 2  (A)) 
when 2 (A) is given the y or X topology. ^  (2 (A)x) is a complete algebra when 
endowed with the topology of uniform convergence on the compact sets 
2  (Ap) ,pG jV'ì and ~ is then continuous. On the algebra (2 (A)Y) will be 
not considered any topology; however it contains the pointwise limit e* of the 
exponential series for any / e  (2 (A)Y).

Now, we turn to describe H°(2(A)). This group is intimately connected 
to the Boolean structure of open-closed subsets of E(A)Y,2(A)x, and so 
must be closely related to the system I of idempotents of A. What we are 
doing I is just to illuminate this point..

Consider the group homomorphism exp : A —> A* which sends a into 
e*ma, its kernel E and its image U. We have clearly Ucz A1, the connected 
component of 1 in A* which is thus a closed subgroup of A*. If A reduces to 
the complex number field we have U =  A1 =  A*; when A* is open in A, A* 
is locally connected, and by using the logaritmic series we see at once that U 
is open in A* which implies U =  A1. In general however, A1 is not open in A*, 
U is not open in A1 and we may have U 9̂  A1. For example, in the product 
algebra A —^(T )N, T the unidimensional torus, we have A* not open in A, 
U =  A1 not open in A*. In the algebra A =  fé7 (T) endowed with the topology 
of uniform convergence on convergent sequences, U 9̂ A1 and is dense in 
A1 =  A*.

The discussion of the groups U , A1 will be continued in paragraph 2; 
for the time being we are mainly interested in the group E.

First we observe that every element in E has an integer-valued GelTand 
transform and the intersection of E with the radical R (A) (which is equal to
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the kernel of the Gehfand transform ~ ) reduces to 0. This implies that E is a 
discrete subset of A. In particular, every convergent sequence in E must be 
constant from a certain point on.

It is clear that E => I and because E can be considered as a Z-module, 
every finite linear combination with integer coefficients of elements of I belongs 
to E. Let us establish the converse.

Consider an element e in E; its Gehfand transform e is integer-valued 
so that, if we denote for each by yn the circle centered at n with radius

1/4 in the complex plane oriented as usual, the integral (i/2 7t2)J (X— efi1 dX

exists in A and we shall represent its values by j n (e). Fix nx , in Z; by a 
straightforward use of the analytic calculus we recognize that for each pGjV'y

nP (.jni (ß) Jn2 (ß)) '][<( 1/2 tu/) (X — np(e))-1dk\ ( 1/2712) (X — ^ (^ "M X

*1 «2

is 0 when nx na and equals tzv ( jni(è)') if n1 =  n2. Hence j ni (e) is an idem-
potent in A which is orthogonal to every j n<ì (e) with Moreover, since

given p eJi'y j (X — np (e))-71. dX is zero whenever n $ $p&p (jzp (e)) , we can

conclude that p ^ j n i ß f ) " 0 f°r n 4 sPap (% (<?)) which means just that for 
every p e  J f , p ( jn(e))'= o except for finitely-many n in Z! There follows that 
the series 2  n Jn (e) > 2  Jn are absolutely convergent in A. We have

weZ neZ / \ Ä / \ ^
clearly 2  > X  Jn («)e E and I ^  0)1 =   ̂. I X  A W  I = I  whichneZ ■ neZ \ne Z J  \  neZ J
means actually that 2  n ßn (ß) =   ̂ and ^ such a decomposition

neZ neZ
of e is obviously unique. We have thus proved the following generalisation 
of a known result of Banach algebra theory:

LEMMA i . E contains the sum of every absolutely convergent series of integral 
multiples of idempotents. Each element e of E is the sum of a uniquely determined 
series 2  n fn (ß) ° f integer multiples of pairwise orthogonal idempotents with

n e Z
sum I . I f  on A exists a continuous norm y then only finitely-many j n (e) are 9̂  o. 

We are now in a position to prove

Theorem i . We have H° (2 (A)Y , Z) =  H° (2 (A)x , Z) and E is naturally 
isomorphic to these groups.

Proof. The Gel’fand transform of an e e E is a convergent series with 
integer coefficients of characteristic functions of closed—open subsets of 
2  (A) with disjoint supports and so we have a natural homomorphism 
E —> H° (2 (A)Y , Z); we shall denote by 1 its composition with the inclusion 
H°(2(A)y , Z) -> H° (2 (A)x , Z). Let us verify that 1 is onto.
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Take an element of H° (2 (A)x , Z), we can associate with it in a stardard 
way an integer-valued continuous function 0; we claim just that 0 =  ê for 
some e in E. Fix n in Z and for each p e  J f  denote by j% the unique idempotent 
in A p for which we have according to Silov idempotent’s theorem, that 
( j lY  is the characteristic function of 0“1 (n) H 2 (Ap). We also must have 
npq(Jn)=jn f°r KvqUn)* =  whenever q is finer than p . It follows
that there is j n in I for which izp ( jn) — jn , fi€  dd. Now, the series 2  nJn

n e Z
converges in A because for fixed fie jV ' only finitely-many fi ( jn) are f i o  
and so its sum is the claimed eelL.

2. This paragraph concerns the group H1 (2 (A) , Z). First we prove

Proposition i . Û == exp f i  (2 (A)x)) n  Â ; moreover, i f  f e  (2 (A)x) 
satisfies the equation â =  exp (/) fo r  some ae A  , there exists a unique be A  
such that a =  exp (fi) and b =  / .  Therefore the Gelfand transform establishes 
an isomorphism into

A*/U ^  (2 (A)x)*/exp (*> (2 (A)x)) .

Proposition T. U A dense in A1 <2̂  A1 =  lim (exp (Af) ,

(A1)" =  T  (2(A)x)1nA . GeV fa n d  transform induces an isomorphism into 

A* I A ' -  V (2 (A)x)*/«f (2 (A)x)1.

Proof of proposition 1 . The uniqueness part is clear from the fact zero is
the unique solution of exp (x) =  1 in R (A). To prove the existence it suffices
for each p e  f i '  to solve the equation np (a) =  exp (bj) ybp — / |s (Afi) in Ap, which
is possible by using analytic calculus, and observe that (bp)pejr belongs to
lim A*,.*

Proof of proposition T. We first show that U is dense in A1. Let ae  A1, 
p  e f i  and 8 be a real number > 0. izp (A1) a  A  ̂=  exp (Ap) because np (A1) 
must be connected and contains 1. Hence np (a) =  exp (bp) with bpe Ap, 
and by choosing some b in A whith p  (exp (7zp (bj) — exp (bfj) <  8, which 
is possible because np (A) is dense in Ap , we have in A, p  (exp fi) — a) <  8. 
The argument also establishes the first equality relation. (A1) ~ cz <€ (2 (Afi)1 
is clear; the converse inclusion is a consequence of the following appro­
ximation lemma:

LEMMA 2. Let a e A* be such that â is in the closure (2 (A)x)1 of 
exp f i  (2(A)x)); then a is in the closure A1 of U.

Proof ‘ It is enough to observe that for eachp e  f i ,  d\^Ap) =  kp (a y  e 
e ^  (2 (Ap))1 =  exp f i  (2 (Ap))) and then apply an argument similar to the 
first part of the proof of proposition T.

Let t be one of the topologies y or X, denote by the sheaf of germs of 
continuous functions and by the sheaf of germs of continuous invertible 
functions on 2 (A)T .
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The commutative diagram of exact sequences of sheaves

implies a commutative diagram of cohomology sequences 

o -> H°(2(A)Y , Z) »  (E (A)Y) »  (2 (A)y)*-> H1 (2 (A)Y, Z) H1 (2 (A)Y , flfY)

o H°(2(A)x, Z) -* <*f(2 (A)x) ^  (E (A)x)* H1 (2 (A)x, Z) H1 (2 (A)x , «YY

which tells us that H° (2 (A)T , Z) is just the kernel of the considered exponential 
function whereas ker vT is its cokernel. In particular, if H1 (2 (A)T , 9%) va­
nishes, we have (2 (A)T)/exp (f€ (2 (A)T)) =  H1 (2 (A)T , Z); this is mainly 
the case whenever 2(A)T is paracompact because 2(A)T being also completely 
regular, the sheaf is soft.

By applying the classical H1-theorem of Arens and Royden for Banach 
algebras it is now easy to draw a lot of consequences from the information 
which is contained in the above diagrams. Here we will only explicitate what 
can be said in general without further hypothesis on A or 2 (A). In another 
paper Fréchet and Schwartz algebras will be considered.

T h eorem  2. We have a commutative diagram of injective homomorphisms 

A*/Ax -> lim A^/exp (A )̂
- I *

k I
^  (2 (A)x)*/«f (2 (A)x)1-> lim (2 (A ^ /ex p  (<f (2 (A,))

and lim A% /exp (A )̂ — lim H1 (2 (Kf) , Z).

THEOREM 2'. Let 2(A )T be the maximal ideal space of the algebra of 
continuous bounded functions on 2 (A)T with the uniform norm. Then the 
group (2 (A)T)*/exp (jo (2 (A)T)) is isomorphic to the image of the natural 
homorphism H1 (2 (A)T , Z) -> H1 (2 (A)T , Z).
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