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Algebra. — On subgroups of certain alternating groups. Nota di
Rupy J. List, presentata ® dal Socio G. ZaPpa.

RIASSUNTO. — Siano S, e A rispettivamente il gruppo simmetrico e il gruppo alterno
su 7 lettere, e sia G un sottogruppo di S, . Per le seguenti coppie (G, #), se GEHC S, si ha
che o HCAutG o H2A,.

(z) G & 1l gruppo semplice eccezionale scoperto da Higman e Sims, e 7 = 100;
(zz) G & come 1 (7), e n=176; .

(7zZ) G ¢ il gruppo semplice eccezionale scoperto da McLaughlin, e z = 275;
(zz) G e 1l pilt piccolo gruppo semplice eccezionale scoperto da Conway, e z = 276;
(@) G & PSU,(32), e 7 = 112. '

1. INTRODUCTION

Let Q denote a finite set, and let S (Q) and A (Q) be the symmetric and
alternating groups on Q respectively. A general approach to problems in-
volving the question of maximality of a primitive permutation group G in
A (Q) or S(Q) is to consider whether an overgroup H must be more highly
transitive than G. The general idea is to examine the extent to which the
orbits on Q —U of the stabilizer in G of a subset U of Q must join together
when passing to the stabilizer of U in H. In this note we illustrate some aspects
of this approach by examining the pairs (G, Q) in the following cases:

@) G is the exceptional simple group discovered by Higman and Sims,
and | Q| = 100.

6) G isg again the Higman-Sims group, and | Q| = 176.
) G @ PSU,(3?), and | Q] = 112.
d) G is the simple group discovered by McClaughlin, and | Q | = 275.

In each case we prove that if G € H < S (Q), either H < Aut (G), or
H=2A Q). If G is the McClaughlin group Aut (G) ~ G.2, and this is the
stabilizer of a point in the smallest Conway group when it is represented on
276 points. Hence the smallest Conway group is a maximal subgroup of A.

If M is a permutation group on a set A, and if {«,B,---, v} S A, the
pointwise stabilizer of {a,,---, vy} is denoted by Myg...,, and the setwise
stabilizer is denoted by Mg...y. M-N denotes an extension of M by N.
When convenient an orbit of length 2 is denoted by O,,. If there are several
orbits of length 2, they may be denoted by Oy, , 0% ,---. If Ac A, M|A

(*) Nella. seduta dell’8 marzo 1980.
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denotes the restriction of M to A. If s and » are integers, » |z means m
divides 2. Thus |H| ‘ [(G|A)] means the order of H divides the order
of G restricted to A.

2. IN THIS SECTION WE PROVE a), &), ¢), d)

@) Higman and Sims construct a graph J on 100 vertices, and G is a
subgroup of index 2 in Aut (#). G is rank-3 on Q and G,~ M,,, with sub-
degrees 1, 22, 77. Hence if H & Aut (G), H is 2-transitive on Q. O,, and O,
correspond to the points and blocks of a Steiner system & =% (3,6, 22),
and edges of # may be described in terms of incidence in &. A detailed descrip-
tipn of the geometry of & has been given in [11]. We use results and easy
consequences from [11] without further reference to it. If Be Oy, ve Oy
the orbits of G, Gey may be diagrammatically summarized as follows:

21 21 56
Gop a3 \ | |
6 16 16 60
Goy oy 1=l ! !
21 21 56
Here, for example, | | ! | means that

Q — {«, B} is the union of three orbits Os1,0%,055. Set O3, U Og6 = Oq.

The orbits of Hyg, Hyy are unions of orbits of Gag, Guy respectively, and
since H is 2-transitive, the orbit diagrammes of H,; and H,, are equivalent.
This can only happen if H is 3-transitive.

Take p€ O3, 36 Og. From the geometry of & the following situation
< y g

occurs:

Gaﬂpyﬁeozz,pGOél:och[i[ 16 16, 20 40 I

Guss, PEO,,, 56Oyt B8 |22 20 12 18, © |

By 3-transitivity the orbits of Heg, and Hggs are equivalent. Clearly the only
possibilities are Oy, Ogs, Og5, of Og5, 045 (45,16) = (45,52) = 1, so Hyg is
imprimitive by a thegrem of Weiss [19; 17.5]. Considering the divisors of 98
this is clearly impossible. Therefore H is 4-transitive and so H 2 A (Q)
[19; 13.9].

6) Q may be taken to be the cosets of a PXU,;(5%) = G. Using the
PXU; (5?) located explicitly in G by Magliveras generators of G on Q were
constructed. Much information about G represented as a subgroup of A (Q)
is contained in [9], and we assemble some of it here.

G is 2-transitive on Q. If «,BeQ, Gy has orbits {a}, {8}, and A(B),
I'®),Z (B) of lengths 12, 72, 9o respectively. Gap =~ Aut (Sy). Following [9]
A@)=DUD*, where DND*=g ,|D|= |D*| =6. Denote Ga,sjupm
by K. K =~ S, and the action of K restricted to Q — ({«, } UD) is impri-
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mitive of block length 6, the blocks of imprimitivity being conjugates of D*
under K. For yeD the diagrammes of Gug, and Ggy, are respectively:

5, 6 6 8 30 30 30 60
Gapy 2By HI—I—1— ; ! | —]

G . 35, 18 60 \ 90 ,
(aBy) - o ! | i

Gapn/Gagy ~ Sz and acts on the orbits of length 6 and 30.

Take 6 %= 1,66 Hoyg— Gog. Some conjugate of ¢ restricts nontrivially
to A (B), since Q — ({o, B} UD) is union of conjugates of D*. Aut (Ss) is a
maximal subgroup of M,,. Thus if A (B) is an orbit of Hep , Hag | A (B) contains
M;;, so Hgg has an orbit O;, 7> 12,7| 11.12 [19; 17.7]. This is impossible
given the subdegrees of Gos. Thus if H is not 3-transitive, Hog | Q@ — {x, 8}
has orbits (i) A@UI'P),Z () or (i) AR UZ®), I'®). In case (i) take
peA®), el B). Then |A(UT(HOZ®| = AXNUTE)NZ® .
Taking B =12, p=14, y=13 and consulting the appendix the cardinalities
are 50 and 30 respectively.

In case (ii) H|Oyy has orbits O,y , Oy, and an element of order 17 when
restricted to Oy has 4 + £.17 fixed points, 0 << £<<3. Clearly Hog | Oy is
primitive. Using the fact that G,s contains elements of order 5 fixing two
points of Oy and arguing as in @) Hyg|Oy, is 2-transitive. But 71 is prime.
Therefore H 2 A (Q) [19; 13.10].

Hence H is 3-transitive.- From the diagrammes of Gagy , Gogy) above, either
Hgg | £ — {o, B} is primitive or imprimitive with block length 6 and image
of imprimitivity in S,y. Gogy 2 S;, so Hyg is not solvable. Therefore H,g acting
on the blocks contains Ay [1]. Hence a Sylow 17-subgroup of H fixes 74
points, and H 2 A (Q) [19; 13.10]. If Heg| Q — {«, B} is primitive Hogy,v€ D,
has no Oy by [19; 17.7]. The possibilities for orbits of Hg, obtained by
joining Oy to other orbits of Gy are O;,7=23,65,95,83,113,155,173.
By the primeifactorization of these 7, if O; is an orbit of H gy, it must also be
one of Hys,. Hence ¢ =173 [19; 17.5], and H2A(Q) [19; 13.9].

¢) Q may be taken to be the set of maximal isotropic subspaces of
V4 (3% with a unitary geometry. This geometry is classical and we assume
familiarity with it. If ae Q, let A (a) and I'(e) of lengths 30 and 81 respectively
be the nontrivial orbits of G,. Denote the set of blocks of G, |A(x) by B ()
Take 2,6 A(x) and let {a,, a5} = A () NA(a). Set {i,7,k ={1,2,3}.
Then A (@;) = {«, a;, a;} UO;vz, where O}, =T () NA(ay); 04N 0L = o,
i 75 Aa) DA(a) ={a, @} ; O, =1, 2,3 are the orbits of Kogyaya,| I (@)
where K is the kernel of G, acting on B («). The orbits of a Sylow 3-subgroup
P of Gugyagey are {0}, {@;}, i =1,2,3, A(a)—{a,,ay, as}, Ok, i=1,2 )3
Aut (G)/G ~ Dy, and Aut (G), ~ K. (C,xPI'L,(9)). The central invo-
lution in C, X PT'L, (9) inverts every element of K.
Since Ay cannot be represented reducibly as a subgroup of GL,(3),
Cor,3 (As) =Z(GL, (3)) = C,. Also maximal elementary abelian 2-groups of
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GL, (3) are of order 16, and A; can be represented in GL, (2) in just one way;
hence if L is a 2-group and L.Ag< GL,(3), L ~C,.

Now suppose that H is rank-3. . Then H,|A («) is faithful, since G, | I' (&)
is primitive. Suppose H, | A («) is imprimitive, and let J be the kernel of
imprimitivity, K |I'(«) is self centralizing in S(I'(«)), so J|{T'()=K | T («).
It follows that if ¢ is of order 3 in J — K, 6 (A (8)) 7= A (6) while ¢ (&) = ¢,
for some be I' (o). This is impossible. By the remarks concerning embedding
Ag in GL4(3) and GL,(2) it now follows that J=K or else ]=K.C,,
and C, inverts each element of K. Hence H, represented on B («) contains
A B () =Ay. But Ay E GL,(3). This is impossible (K ~V,(3)). Suppose,
therefore, that H, | A («) is primitive, so that H, | A («) and H, | I' () are both
faithful. Considering the orbits of P it follows that H, | A(e) is 2-transitive
[19; 13.1]. An element of order 29 fixes at least 25 points of Q. Therefore
H2A(Q) [19; 13.10]. Therefore H is 2-transitive, and H,|Q —{a} is
primitive, since 111 =3.37 and Gg|I'(a) is primitive.” Therefore H is
3-transitive [13]. If Hgg| Q — {«, B} is imprimitive, the block containing
Y,yYyFo,B, consists of ¥ and a union of orbits of P, i.e., blocks must
have length 2 or s55. For Pel («), Gop ~ Ag has orbit diagramme

10 20 20 30 30
«f |

| | l | by [4]. Clearly 55 isi impossible.
Since Ag & S;, so is 2. Hence Hyg| Q — {«, B} is primitive. Arguing now
as in @) and &) using theorems of Cameron and Weiss [19; 17.5], H is
4-transitive and therefore H 2 A (Q) [19; 13.9].

d) For xe Q,G, ~ PSU, (3®) with suborbits A (x),I'(x) of lengths
112, 162 respectively. Sylow 3-subgroups of G fix two points and have
nontrivial orbits Oj, Oy, Ogl, Jj=1,2,3 If yeI'(x),G,, 2 A with
orbits Oy, 0j, 05,/ = 20, 30, 36, 45 [4].

Suppose H is rank-3. By ¢) [H:G]|8, and G <IH. G contains one class
of PSU, (3% and PSU, (5?) [4], and each of these has trivial centralizer in
Sgs. Hence H/G is faithfully represented in Aut (J)/J ~Cq,D,, for
J =~ PSU, (3%, PSU; (5% respectively. Hence [H:G]|2 and H < Aut (G).

Hence H & Aut (G), and so H is 2-transitive. 274 = 2.137 and H, is
primitive. Therefore H is 3-transitive [19; 31.1]. If H & Aut(G), then
HOA(Q) £ Aut (G), so HNA (Q) is 3-transitive, and so we may assume
that H < A (Q). Then if |{(6)| =137 and H £ A (Q), ¢ fixes one point
and is self centralizing. If p normalizes but does not centralize o, then,
1@ ' 136, p fixes exactly 3 points @, 4,c of Q and acts semiregularly on
Q-—{a,b,c = Q. Further | Ny (o) | 7 2.137 [10].

Let S be a Sylow 3-subgroup of G, such that {&,4,c} = O;. By 3-tran-
sitivity there is an Ag S Hy, with orbits Oy, 0}, 05,7 =20, 30, 36, 45.
Set Hagpy =M. M 2 (A4, S, p), where p has order 4 or 17. From the orbits
of Ag and S and the semiregularity of p on Q' it follows that M is transitive
on Q'. If M| Q' is imprimitive, the orbits of S force block length 2. Then Oy,
is a union of 5 blocks, whereas Ag ¢ Sys. Therefore M | Q' is primitive. Since
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H,. <M, H,, is transitive on Q' [19; 8.8], so H is 4-transitive on Q. Con-
sider M,,x€ Q. By 4-transitivity, there is an element of order 5 fixing
{a,b,c,x,y}). Hence orbits of M,| Q' — {x} are unions of {x}, Oy, Oh,
J=1,2,3, and exactly one has length congruent to 1 (mod 5), all others
being congruent to o (mod 5). The possibilities are: 1, 270; 190, 81. These
both imply that H 2 A (Q) by arguing as in a), 8), ¢), and using the fact that
A,, has no proper subgroup of index dividing 190.

APPENDIX

1. Generators of the Higman—Sims group as a subgroup of Aiz.
a=M)(,i+1,i+2,i+3,7+4,i+5,74+6), 2<i<176, =2 (mod?y)

b = (1,2) (3,9) (4,16) (5,23) (6,30) (7,37) (8,44) (10,25) (11,51) (12,58) (13,65) (14) (15,72)
(17,49) (18,79) (19,45) (20,86) (21,93) (22,100) (24,107) (26,108) (27,32) (28,114)
(29,121) (31,87) (33,128) (34,77) (35.46) (36,48) (38) (39,135) (40,129) (41,75)
(42,54) (43,116) (47) (50,132) (52,59) (53) (55) (56,97) (57,130) (60) (61,142) (62,149)
(63,127) (64,92) (66,88) (67,133) (68,156) (69,118) (70,113) (71,163) (73,148)
(74,165) (76,81) (78,164) (80,159) (82,106) (83) (84,167) (85,104) (89) (90,168)
(91,139) (94,124) (95,105) (96,119) (98) (99,170) (101,162) (102,117) (103,141)
(ro9) (110,160) (111,140) (112,157) (115,154) (120) (122,147) (123,137) (125,150)
(126,175) (131,144) (134,171) (136,158) (138) (143,161) (145,176) (146,169) (151)
(152,172) (153,155) (166) (173) (174).

II. Orbits of Gia; | Q| = 176.

A:{I},B={2},C:{14,35,38,43,46,83,102,116,117,136,151,158},

D ={3,4,7, 8,09, 12, 15, 16, 19, 21, 24, 26, 28, 29, 31, 34, 37, 39, 40, 41, 44, 45, 52,
56, 58, 62, 63, 67, 69, 71, 72, 75, 76, 77, 81, 84, 85, 87, 91, 93, 94, 97, 101, 104,
107, 108, 112, 114, 118, 121, 124, 127, 129, 131, 133, 134, 135, 139, 144, 149, 152,
153, 155, 157, 162, 163, 167, 171, 172, 176},

E=Q—(AuBuCuD).
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