ATTI ACCADEMIA NAZIONALE DEI LINCEI # CLASSE SCIENZE FISICHE MATEMATICHE NATURALI # RENDICONTI # Rudy J. List # On subgroups of certain alternating groups Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **68** (1980), n.3, p. 173–178. Accademia Nazionale dei Lincei <http://www.bdim.eu/item?id=RLINA_1980_8_68_3_173_0> L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento. Algebra. — On subgroups of certain alternating groups. Nota di Rudy J. List, presentata (*) dal Socio G. Zappa. RIASSUNTO. — Siano S_n e A_n rispettivamente il gruppo simmetrico e il gruppo alterno su n lettere, e sia G un sottogruppo di S_n . Per le seguenti coppie (G,n), se $G\subseteq H\subseteq S_n$, si ha che o $H\subseteq \operatorname{Aut} G$ o $H\supseteq A_n$. - (i) G è il gruppo semplice eccezionale scoperto da Higman e Sims, e n = 100; - (ii) G è come in (i), e n = 176; - (iii) G è il gruppo semplice eccezionale scoperto da McLaughlin, e n = 275; - (iv) G è il più piccolo gruppo semplice eccezionale scoperto da Conway, e n=276; - (v) G è $PSU_4(3^2)$, e n = 112. ### 1. Introduction Let Ω denote a finite set, and let $S(\Omega)$ and $A(\Omega)$ be the symmetric and alternating groups on Ω respectively. A general approach to problems involving the question of maximality of a primitive permutation group G in $A(\Omega)$ or $S(\Omega)$ is to consider whether an overgroup H must be more highly transitive than G. The general idea is to examine the extent to which the orbits on Ω —U of the stabilizer in G of a subset U of Ω must join together when passing to the stabilizer of U in H. In this note we illustrate some aspects of this approach by examining the pairs (G,Ω) in the following cases: - a) G is the exceptional simple group discovered by Higman and Sims, and $|\Omega| = 100$. - b) G is again the Higman-Sims group, and $|\Omega| = 176$. - c) G $\simeq PSU_4(3^2)$, and $|\Omega| = 112$. - d) G is the simple group discovered by McClaughlin, and $|\Omega| = 275$. In each case we prove that if $G \subseteq H \subseteq S(\Omega)$, either $H \subseteq Aut(G)$, or $H \supseteq A(\Omega)$. If G is the McClaughlin group $Aut(G) \simeq G.2$, and this is the stabilizer of a point in the smallest Conway group when it is represented on 276 points. Hence the smallest Conway group is a maximal subgroup of A_{276} . If M is a permutation group on a set Λ , and if $\{\alpha, \beta, \dots, \gamma\} \subseteq \Lambda$, the pointwise stabilizer of $\{\alpha, \beta, \dots, \gamma\}$ is denoted by $M_{\alpha\beta, \dots, \gamma}$, and the setwise stabilizer is denoted by $M_{(\alpha\beta, \dots, \gamma)}$. M·N denotes an extension of M by N. When convenient an orbit of length m is denoted by O_m . If there are several orbits of length m, they may be denoted by O_m^1 , O_m^2 , \cdots . If $\Delta \subseteq \Lambda$, M $\mid \Delta$ ^(*) Nella seduta dell'8 marzo 1980. denotes the restriction of M to Δ . If m and n are integers, $m \mid n$ means m divides n. Thus $|H| \mid |(G \mid \Delta)|$ means the order of H divides the order of G restricted to Δ . # 2. In this section we prove a), b), c), d) a) Higman and Sims construct a graph $\mathscr I$ on 100 vertices, and G is a subgroup of index 2 in Aut ($\mathscr I$). G is rank-3 on Ω and $G_{\alpha} \simeq M_{22}$, with subdegrees 1, 22, 77. Hence if $H \not \equiv Aut(G)$, H is 2-transitive on Ω . O_{22} and O_{77} correspond to the points and blocks of a Steiner system $\mathscr S = \mathscr S (3,6,22)$, and edges of $\mathscr I$ may be described in terms of incidence in $\mathscr S$. A detailed description of the geometry of $\mathscr S$ has been given in [11]. We use results and easy consequences from [11] without further reference to it. If $\beta \in O_{22}$, $\gamma \in O_{77}$ the orbits of $G_{\alpha\beta}$, $G_{\alpha\gamma}$ may be diagrammatically summarized as follows: $$G_{\alpha\beta}:\alpha\beta \hspace{0.2cm} | \hspace{0.2cm} \stackrel{21}{ \hspace{0.2cm}} | \hspace{0.2cm} \stackrel{21}{ \hspace{0.2cm}} | \hspace{0.2cm} \stackrel{56}{ \hspace{0.2cm}} | \hspace{0.2cm} |$$ $$G_{\alpha\gamma}:\alpha\gamma \hspace{0.2cm} | \hspace{0.2cm} \stackrel{6}{ \hspace{0.2cm}} | \hspace{0.2cm} | \hspace{0.2cm} \stackrel{16}{ \hspace{0.2cm}} | \hspace{0.2cm} \hspace{$$ Here, for example, $\frac{21}{\Omega-\{\alpha\,,\,\beta\}} \text{ is the union of three orbits } O^1_{21}, O^2_{21}, O_{56}. \text{ Set } O^2_{21} \cup O_{56} = O_{77}.$ The orbits of $H_{\alpha\beta}$, $H_{\alpha\gamma}$ are unions of orbits of $G_{\alpha\beta}$, $G_{\alpha\gamma}$ respectively, and since H is 2-transitive, the orbit diagrammes of $H_{\alpha\beta}$ and $H_{\alpha\gamma}$ are equivalent. This can only happen if H is 3-transitive. Take $\rho \in O_{21}^1$, $\delta \in O_{56}$. From the geometry of $\mathscr S$ the following situation occurs: $$G_{\alpha\beta\rho}\;,\;\beta\in O_{22}\;,\;\rho\in O_{21}^1:\;\alpha\;\beta\;\rho\;|^{\frac{1}{5}}|^{\frac{16}{6}}|^{\frac{16}{6}}|^{\frac{20}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{45}{15}}|^{\frac{$$ By 3-transitivity the orbits of $H_{\alpha\beta\rho}$ and $H_{\alpha\beta\delta}$ are equivalent. Clearly the only possibilities are O_{16} , O_{36} , O_{45} , or O_{45} , O_{52} . (45,16)=(45,52)=1, so $H_{\alpha\beta}$ is imprimitive by a theorem of Weiss [19; 17.5]. Considering the divisors of 98 this is clearly impossible. Therefore H is 4-transitive and so $H \supseteq A(\Omega)$ [19; 13.9]. b) Ω may be taken to be the cosets of a $P\Sigma U_3(5^2)\subseteq G$. Using the $P\Sigma U_3(5^2)$ located explicitly in G by Magliveras generators of G on Ω were constructed. Much information about G represented as a subgroup of $A(\Omega)$ is contained in [9], and we assemble some of it here. G is 2-transitive on Ω . If $\alpha, \beta \in \Omega$, $G_{\alpha\beta}$ has orbits $\{\alpha\}$, $\{\beta\}$, and $\Delta(\beta)$, $\Gamma(\beta)$, $\Sigma(\beta)$ of lengths 12, 72, 90 respectively. $G_{\alpha\beta} \simeq Aut(S_6)$. Following [9] $\Delta(\beta) = D \cup D^*$, where $D \cap D^* = \varnothing$, $|D| = |D^*| = 6$. Denote $G_{(\{\alpha,\beta\} \cup D)}$ by K. $K \simeq S_8$, and the action of K restricted to $\Omega - (\{\alpha,\beta\} \cup D)$ is impri- mitive of block length 6, the blocks of imprimitivity being conjugates of D* under K. For $\gamma \in D$ the diagrammes of $G_{\alpha\beta\gamma}$ and $G_{(\alpha\beta\gamma)}$ are respectively: $$G_{\alpha\beta\gamma}: \alpha \beta \gamma \stackrel{5}{\mid -1 \mid 6 \mid 6 \mid 6 \mid 30} \stackrel{30}{\mid -1 \mid 30 \mid 30 \mid 60}$$ $G_{(\alpha\beta\gamma)}: \stackrel{3}{\mid -1 \mid 5 \mid 18 \mid 60} \stackrel{90}{\mid -1 \mid 5 \mid 60 \mid 60}$ $G_{(\alpha\beta\gamma)}/G_{\alpha\beta\gamma} \simeq S_3$ and acts on the orbits of length 6 and 30. Take $\sigma \neq 1$, $\sigma \in H_{\alpha\beta} - G_{\alpha\beta}$. Some conjugate of σ restricts nontrivially to Δ (β), since $\Omega - (\{\alpha\,,\,\beta\} \cup D)$ is union of conjugates of D^* . Aut (S_6) is a maximal subgroup of M_{12} . Thus if Δ (β) is an orbit of $H_{\alpha\beta}$, $H_{\alpha\beta} \mid \Delta$ (β) contains M_{12} , so $H_{\alpha\beta}$ has an orbit O_i , i > 12, $i \mid 11.12$ [19; 17.7]. This is impossible given the subdegrees of $G_{\alpha\beta}$. Thus if H is not 3-transitive, $H_{\alpha\beta} \mid \Omega - \{\alpha\,,\,\beta\}$ has orbits (i) Δ (β) \cup Γ (β), Σ (β) or (ii) Δ (β) \cup Σ (β), Γ (β). In case (i) take $\rho \in \Delta$ (β), $\gamma \in \Gamma$ (β). Then $|(\Delta$ (ρ) \cup Γ (ρ)) \cap Σ (β) $|=|(\Delta$ (γ) \cup Γ (γ)) \cap Σ (β) |. Taking $\beta = 2$, $\rho = 14$, $\gamma = 13$ and consulting the appendix the cardinalities are 50 and 30 respectively. In case (ii) $H \mid O_{174}$ has orbits O_{72} , O_{102} , and an element of order 17 when restricted to O_{72} has 4 + k.17 fixed points, $0 \le k \le 3$. Clearly $H_{\alpha\beta} \mid O_{72}$ is primitive. Using the fact that $G_{\alpha\beta}$ contains elements of order 5 fixing two points of O_{72} and arguing as in a) $H_{\alpha\beta} \mid O_{72}$ is 2-transitive. But 71 is prime. Therefore $H \supseteq A(\Omega)$ [19; 13.10]. Hence H is 3-transitive. From the diagrammes of $G_{\alpha\beta\gamma}$, $G_{(\alpha\beta\gamma)}$ above, either $H_{\alpha\beta} \mid \Omega - \{\alpha, \beta\}$ is primitive or imprimitive with block length 6 and image of imprimitivity in S_{29} . $G_{\alpha\beta\gamma} \supseteq S_5$, so $H_{\alpha\beta}$ is not solvable. Therefore $H_{\alpha\beta}$ acting on the blocks contains A_{29} [1]. Hence a Sylow 17-subgroup of H fixes 74 points, and $H \supseteq A(\Omega)$ [19; 13.10]. If $H_{\alpha\beta} \mid \Omega - \{\alpha, \beta\}$ is primitive $H_{\alpha\beta\gamma}$, $\gamma \in D$, has no O_5 by [19; 17.7]. The possibilities for orbits of $H_{(\alpha\beta\gamma)}$ obtained by joining O_5 to other orbits of $G_{(\alpha\beta\gamma)}$ are O_i , i=23, 65, 95, 83, 113, 155, 173. By the prime factorization of these i, if O_i is an orbit of $H_{(\alpha\beta\gamma)}$ it must also be one of $H_{\alpha\beta\gamma}$. Hence i=173 [19; 17.5], and $H \supseteq A(\Omega)$ [19; 13.9]. c) Ω may be taken to be the set of maximal isotropic subspaces of $V_4(3^2)$ with a unitary geometry. This geometry is classical and we assume familiarity with it. If $\alpha \in \Omega$, let $\Delta(\alpha)$ and $\Gamma(\alpha)$ of lengths 30 and 81 respectively be the nontrivial orbits of G_{α} . Denote the set of blocks of $G_{\alpha} | \Delta(\alpha)$ by $B(\alpha)$ Take $a_1 \in \Delta(\alpha)$ and let $\{a_2, a_3\} = \Delta(\alpha) \cap \Delta(a_1)$. Set $\{i, j, k\} = \{1, 2, 3\}$. Then $\Delta(a_i) = \{\alpha, a_k, a_j\} \cup O_{27}^i$, where $O_{27}^i = \Gamma(\alpha) \cap \Delta(a_i)$; $O_{27}^i \cap O_{27}^j = \emptyset$, $i \neq j$; $\Delta(a_i) \cap \Delta(a_j) = \{\alpha, a_k\}$; O_{27}^i , i = 1, 2, 3 are the orbits of $K_{\alpha a_1 a_2 a_3} | \Gamma(\alpha)$ where K is the kernel of G_{α} acting on $B(\alpha)$. The orbits of a Sylow 3-subgroup P of $G_{\alpha a_1 a_2 a_3}$ are $\{\alpha\}$, $\{a_i\}$, $i = 1, 2, 3, \Delta(\alpha) - \{a_1, a_2, a_3\}$, O_{27}^i , i = 1, 2, 3. Aut $(G)/G \simeq D_4$, and Aut $(G)_\alpha \simeq K$. $(C_2 \times P\Gamma L_2(9))$. The central involution in $C_2 \times P\Gamma L_2(9)$ inverts every element of K. Since A_6 cannot be represented reducibly as a subgroup of $GL_4(3)$, $C_{GL_4(3)}(A_6) = Z(GL_4(3)) = C_2$. Also maximal elementary abelian 2-groups of $GL_4(3)$ are of order 16, and A_6 can be represented in $GL_4(2)$ in just one way; hence if L is a 2-group and $L.A_6 \subseteq GL_4(3)$, $L \simeq C_2$. Now suppose that H is rank-3. Then $H_{\alpha} \mid \Delta(\alpha)$ is faithful, since $G_{\alpha} \mid \Gamma(\alpha)$ is primitive. Suppose $H_{\alpha} \mid \Delta(\alpha)$ is imprimitive, and let J be the kernel of imprimitivity. $K \mid \Gamma(\alpha)$ is self centralizing in $S(\Gamma(\alpha))$, so $J \mid \Gamma(\alpha) = K \mid \Gamma(\alpha)$. It follows that if σ is of order 3 in J - K, $\sigma(\Delta(b)) \neq \Delta(b)$ while $\sigma(b) = b$, for some $b \in \Gamma(\alpha)$. This is impossible. By the remarks concerning embedding A_6 in $GL_4(3)$ and $GL_4(2)$ it now follows that J=K or else $J=K.C_2$, and C_2 inverts each element of K. Hence H_{α} represented on $B(\alpha)$ contains $A(B(\alpha)) = A_{10}$. But $A_{10} \nsubseteq GL_4(3)$. This is impossible $(K \simeq V_4(3))$. Suppose, therefore, that $H_{\alpha} \mid \Delta(\alpha)$ is primitive, so that $H_{\alpha} \mid \Delta(\alpha)$ and $H_{\alpha} \mid \Gamma(\alpha)$ are both faithful. Considering the orbits of P it follows that $H_{\alpha} \mid \Delta(\alpha)$ is 2-transitive [19; 13.1]. An element of order 29 fixes at least 25 points of Ω . Therefore $H \supseteq A(\Omega)$ [19; 13.10]. Therefore H is 2-transitive, and $H_{\alpha} \mid \Omega - \{\alpha\}$ is primitive, since III = 3.37 and $G_{\alpha} \mid \Gamma(\alpha)$ is primitive. Therefore H is 3-transitive [13]. If $H_{\alpha\beta} \mid \Omega - \{\alpha, \beta\}$ is imprimitive, the block containing γ , $\gamma \neq \alpha$, β , consists of γ and a union of orbits of P, i.e., blocks must have length 2 or 55. For $\beta \in \Gamma(\alpha)$, $G_{\alpha\beta} \simeq A_6$ has orbit diagramme α β $\begin{vmatrix} 10 & 20 & 20 \end{vmatrix}$ by [4]. Clearly 55 is impossible. Since $A_6 \not\subseteq S_5$, so is 2. Hence $H_{\alpha\beta} \mid \Omega - \{\alpha, \beta\}$ is primitive. Arguing now as in a) and b) using theorems of Cameron and Weiss [19, 17.5], H is 4-transitive and therefore $H \supseteq A(\Omega)$ [19; 13.9]. d) For $x \in \Omega$, $G_x \simeq \mathrm{PSU}_4(3^2)$ with suborbits $\Delta(x)$, $\Gamma(x)$ of lengths 112, 162 respectively. Sylow 3-subgroups of G fix two points and have nontrivial orbits O_3 , O_{27} , O_{81}^j , j=1, 2, 3. If $y \in \Gamma(x)$, $G_{xy} \supseteq A_6$ with orbits O_{10} , O_j^1 , O_j^2 , j=20, 30, 36, 45 [4]. Suppose H is rank-3. By c) [H:G]|8, and $G \subseteq H$. G contains one class of $PSU_4(3^2)$ and $PSU_3(5^2)$ [4], and each of these has trivial centralizer in S_{275} . Hence H/G is faithfully represented in $Aut(J)/J \simeq C_6$, D_4 , for $J \simeq PSU_4(3^2)$, $PSU_3(5^2)$ respectively. Hence [H:G]|2 and $H \subseteq Aut(G)$. Hence H \(\pm \) Aut (G), and so H is 2-transitive. 274 = 2.137 and H_x is primitive. Therefore H is 3-transitive [19; 31.1]. If H \(\pm \) Aut (G), then H \(\cap \) A (\(\Omega \)) \(\pm \) Aut (G), so H \(\cap \) A (\(\Omega \)) is 3-transitive, and so we may assume that H \(\sum \) A (\(\Omega \)). Then if \(| \langle \sigma \rangle | = 137 \) and H \(\neq \) A (\(\Omega \)), \(\sigma \) fixes one point and is self centralizing. If \(\rho \) normalizes but does not centralize \(\sigma \), then, \(|\langle \rho \rangle | = 136, \(\rho \) fixes exactly 3 points \(\alpha \), \(\rho \) of \(\Omega \) and acts semiregularly on \(\Omega \cdot \), \(\chi \) \(\rho \), \(\chi \) Further \(|\mathbf{N}_{\mathbf{H}}(\sigma) | \neq 2.137 \) [10]. Let S be a Sylow 3-subgroup of G_{xy} such that $\{a,b,c\} = O_3$. By 3-transitivity there is an $A_6 \subseteq H_{abc}$ with orbits O_{16} , O_j^1 , O_j^2 , j=20, 30, 36, 45. Set $H_{(abc)} = M$. $M \supseteq \langle A_6$, S, $\rho \rangle$, where ρ has order 4 or 17. From the orbits of A_6 and S and the semiregularity of ρ on Ω' it follows that M is transitive on Ω' . If $M \mid \Omega'$ is imprimitive, the orbits of S force block length 2. Then O_{10} is a union of 5 blocks, whereas $A_6 \nsubseteq S_5$. Therefore $M \mid \Omega'$ is primitive. Since $H_{abc} \triangleleft M$, H_{abc} is transitive on Ω' [19; 8.8], so H is 4-transitive on Ω . Consider M_x , $x \in \Omega'$. By 4-transitivity, there is an element of order 5 fixing $\{a,b,c,x,y\}$. Hence orbits of $M_x \mid \Omega' - \{x\}$ are unions of $\{x\}$, O_{27} , O_{81}^j , j=1, 2, 3, and exactly one has length congruent to 1 (mod 5), all others being congruent to 0 (mod 5). The possibilities are: 1, 270; 190, 81. These both imply that $H \supseteq A(\Omega)$ by arguing as in a, b, c, and using the fact that A_{27} has no proper subgroup of index dividing 190. ### APPENDIX I. Generators of the Higman-Sims group as a subgroup of A₁₇₆. ``` a = (1) \ (i \ , i + 1 \ , i + 2 \ , i + 3 \ , i + 4 \ , i + 5 \ , i + 6), \quad 2 \le i \le 176 \ , \quad i \equiv 2 \ (\text{mod } 7) b = (1,2) \ (3,9) \ (4,16) \ (5,23) \ (6,30) \ (7,37) \ (8,44) \ (10,25) \ (11,51) \ (12,58) \ (13,65) \ (14) \ (15,72) \ (17,49) \ (18,79) \ (19,45) \ (20,86) \ (21,93) \ (22,100) \ (24,107) \ (26,108) \ (27,32) \ (28,114) \ (29,121) \ (31,87) \ (33,128) \ (34,77) \ (35,46) \ (36,48) \ (38) \ (39,135) \ (40,129) \ (41,75) \ (42,54) \ (43,116) \ (47) \ (50,132) \ (52,59) \ (53) \ (55) \ (56,97) \ (57,130) \ (60) \ (61,142) \ (62,149) \ (63,127) \ (64,92) \ (66,88) \ (67,133) \ (68,156) \ (69,118) \ (70,113) \ (71,163) \ (73,148) \ (74,165) \ (76,81) \ (78,164) \ (80,159) \ (82,106) \ (83) \ (84,167) \ (85,104) \ (89) \ (90,168) \ (91,139) \ (94,124) \ (95,105) \ (96,119) \ (98) \ (99,170) \ (101,162) \ (102,117) \ (103,141) \ (109) \ (110,160) \ (111,140) \ (112,157) \ (115,154) \ (120) \ (122,147) \ (123,137) \ (125,150) \ (126,175) \ (131,144) \ (134,171) \ (136,158) \ (138) \ (143,161) \ (145,176) \ (146,169) \ (151) \ (152,172) \ (153,155) \ (166) \ (173) \ (174). ``` II. Orbits of $G_{1,2}$; $|\Omega| = 176$. $A = \{\text{i}\}\,,\, B = \{\text{2}\}\,,\,\, C = \{\text{i4}\,,\,3\text{5}\,,\,3\text{8}\,,\,4\text{3}\,,\,4\text{6}\,,\,8\text{3}\,,\,\text{102}\,,\,\text{116}\,,\,\text{117}\,,\,\text{136}\,,\,\text{151}\,,\,\text{158}\}\,,$ $D = \{3, 4, 7, 8, 9, 12, 15, 16, 19, 21, 24, 26, 28, 29, 31, 34, 37, 39, 40, 41, 44, 45, 52, 56, 58, 62, 63, 67, 69, 71, 72, 75, 76, 77, 81, 84, 85, 87, 91, 93, 94, 97, 101, 104, 107, 108, 112, 114, 118, 121, 124, 127, 129, 131, 133, 134, 135, 139, 144, 149, 152, 153, 155, 157, 162, 163, 167, 171, 172, 176\},$ $E = \Omega - (A \cup B \cup C \cup D).$ #### REFERENCES - [1] K. I.APPEL and E. T. PARKER (1967) On unsolvable groups of degree p=4q+1, p and q primes, «Can. J. Math.», 19, 538-589. - [2] P. J. CAMERON (1972) Permutation groups with multiply transitive suborbits, « Proc. London Math. Soc. », (3) 25, 427-440. - [3] P. Dembowski (1968) Finite Geometries, Springer-Verlag. - [4] LARRY FINKELSTEIN (1973) The Maximal Subgroups of Conway's Group. C₃ and McLaughlin's Group, « J. Algebra », 25, 58-89. - [5] M. D. HESTENES and D. G. HIGMAN (1971) Rank 3 groups and strongly regular graphs, «SIAM AMS Proc. », IV, 141-159. - [6] D. G. HIGMAN (1964) Finite permutation groups of rank 3, «Math. Z.», 86, 145-156. - [7] D. G. HIGMAN (1966) Primitive rank 3 groups with a prime subdegree, «Math. Z.», 91, 70–86. - [8] D. G. HIGMAN (1970) A survey of some questions and results about rank 3 permutation groups, «Actes Congres Intern. Math. », 1, 361-365. - [9] GRAHAM HIGMAN (1967) On the simple group of D. G. Higman and C. C. Sims, «Illinois I. Maths. », 13, 74-80. - [10] N. Ito (1962) On transitive simple permutation groups of degree 2 p, «Math. Z.», 78, 453-468. - [11] HEINZ LÜNEBURG Über die Gruppen von Mathieu, « J. Algebra », 10, 194-210. - [12] S. S. MAGLIVERAS (1970) The Subgroup Structure of the Higman-Sims Simple Group, Thesis, University of Birgmingham. - [13] P. M. NEUMANN (1969) Primitive permutation groups of degree 3 p, preprint. - [14] CHERYL E. PRAEGER (1973) On the Sylow Subgroups of Transitive Permutation Groups, «Math. Z.», 134, 179-180. - [15] CHERYL E. PRAEGER (1974) On the Sylow Subgroups of a Doubly Transitive Permutation Group, & Math. Z., 137, 155-171. - [16] CHERYL E. PRAEGER (1975) On the Sylow Subgroups of a Doubly Transitive Permutation Group II, «Math. Z.», 143, 131-143. - [17] CHERYL E. PRAEGER (1975) On the Sylow Subgroups of a Doubly Transitive Permutation Group III, «Bulletin Aust. Math. Soc.», (2) 13, 211-240. - [18] M. S. SMITH (1975) On Rank 3 Permutation Groups, « J. Algebra », 33, 22-42. - [19] H. WIELANDT (1964) Finite Permutation Groups, «Academic Press». - [20] DONALD G. HIGMAN and CHARLES C. SIMS (1968) A Simple Group of Order 44, 552,000, «Math. Z.», 105, 110-113.