ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

Rudy J. List

On subgroups of certain alternating groups

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **68** (1980), n.3, p. 173–178. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1980_8_68_3_173_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Algebra. — On subgroups of certain alternating groups. Nota di Rudy J. List, presentata (*) dal Socio G. Zappa.

RIASSUNTO. — Siano S_n e A_n rispettivamente il gruppo simmetrico e il gruppo alterno su n lettere, e sia G un sottogruppo di S_n . Per le seguenti coppie (G,n), se $G\subseteq H\subseteq S_n$, si ha che o $H\subseteq \operatorname{Aut} G$ o $H\supseteq A_n$.

- (i) G è il gruppo semplice eccezionale scoperto da Higman e Sims, e n = 100;
- (ii) G è come in (i), e n = 176;
- (iii) G è il gruppo semplice eccezionale scoperto da McLaughlin, e n = 275;
- (iv) G è il più piccolo gruppo semplice eccezionale scoperto da Conway, e n=276;
- (v) G è $PSU_4(3^2)$, e n = 112.

1. Introduction

Let Ω denote a finite set, and let $S(\Omega)$ and $A(\Omega)$ be the symmetric and alternating groups on Ω respectively. A general approach to problems involving the question of maximality of a primitive permutation group G in $A(\Omega)$ or $S(\Omega)$ is to consider whether an overgroup H must be more highly transitive than G. The general idea is to examine the extent to which the orbits on Ω —U of the stabilizer in G of a subset U of Ω must join together when passing to the stabilizer of U in H. In this note we illustrate some aspects of this approach by examining the pairs (G,Ω) in the following cases:

- a) G is the exceptional simple group discovered by Higman and Sims, and $|\Omega| = 100$.
 - b) G is again the Higman-Sims group, and $|\Omega| = 176$.
 - c) G $\simeq PSU_4(3^2)$, and $|\Omega| = 112$.
 - d) G is the simple group discovered by McClaughlin, and $|\Omega| = 275$.

In each case we prove that if $G \subseteq H \subseteq S(\Omega)$, either $H \subseteq Aut(G)$, or $H \supseteq A(\Omega)$. If G is the McClaughlin group $Aut(G) \simeq G.2$, and this is the stabilizer of a point in the smallest Conway group when it is represented on 276 points. Hence the smallest Conway group is a maximal subgroup of A_{276} .

If M is a permutation group on a set Λ , and if $\{\alpha, \beta, \dots, \gamma\} \subseteq \Lambda$, the pointwise stabilizer of $\{\alpha, \beta, \dots, \gamma\}$ is denoted by $M_{\alpha\beta, \dots, \gamma}$, and the setwise stabilizer is denoted by $M_{(\alpha\beta, \dots, \gamma)}$. M·N denotes an extension of M by N. When convenient an orbit of length m is denoted by O_m . If there are several orbits of length m, they may be denoted by O_m^1 , O_m^2 , \cdots . If $\Delta \subseteq \Lambda$, M $\mid \Delta$

^(*) Nella seduta dell'8 marzo 1980.

denotes the restriction of M to Δ . If m and n are integers, $m \mid n$ means m divides n. Thus $|H| \mid |(G \mid \Delta)|$ means the order of H divides the order of G restricted to Δ .

2. In this section we prove a), b), c), d)

a) Higman and Sims construct a graph $\mathscr I$ on 100 vertices, and G is a subgroup of index 2 in Aut ($\mathscr I$). G is rank-3 on Ω and $G_{\alpha} \simeq M_{22}$, with subdegrees 1, 22, 77. Hence if $H \not \equiv Aut(G)$, H is 2-transitive on Ω . O_{22} and O_{77} correspond to the points and blocks of a Steiner system $\mathscr S = \mathscr S (3,6,22)$, and edges of $\mathscr I$ may be described in terms of incidence in $\mathscr S$. A detailed description of the geometry of $\mathscr S$ has been given in [11]. We use results and easy consequences from [11] without further reference to it. If $\beta \in O_{22}$, $\gamma \in O_{77}$ the orbits of $G_{\alpha\beta}$, $G_{\alpha\gamma}$ may be diagrammatically summarized as follows:

$$G_{\alpha\beta}:\alpha\beta \hspace{0.2cm} | \hspace{0.2cm} \stackrel{21}{ \hspace{0.2cm}} | \hspace{0.2cm} \stackrel{21}{ \hspace{0.2cm}} | \hspace{0.2cm} \stackrel{56}{ \hspace{0.2cm}} | \hspace{0.2cm} |$$

$$G_{\alpha\gamma}:\alpha\gamma \hspace{0.2cm} | \hspace{0.2cm} \stackrel{6}{ \hspace{0.2cm}} | \hspace{0.2cm} | \hspace{0.2cm} \stackrel{16}{ \hspace{0.2cm}} | \hspace{0.2cm} | \hspace{$$

Here, for example, $\frac{21}{\Omega-\{\alpha\,,\,\beta\}} \text{ is the union of three orbits } O^1_{21}, O^2_{21}, O_{56}. \text{ Set } O^2_{21} \cup O_{56} = O_{77}.$

The orbits of $H_{\alpha\beta}$, $H_{\alpha\gamma}$ are unions of orbits of $G_{\alpha\beta}$, $G_{\alpha\gamma}$ respectively, and since H is 2-transitive, the orbit diagrammes of $H_{\alpha\beta}$ and $H_{\alpha\gamma}$ are equivalent. This can only happen if H is 3-transitive.

Take $\rho \in O_{21}^1$, $\delta \in O_{56}$. From the geometry of $\mathscr S$ the following situation occurs:

$$G_{\alpha\beta\rho}\;,\;\beta\in O_{22}\;,\;\rho\in O_{21}^1:\;\alpha\;\beta\;\rho\;|^{\frac{1}{5}}|^{\frac{16}{6}}|^{\frac{16}{6}}|^{\frac{20}{15}}|^{\frac{45}{15}}|^{\frac{$$

By 3-transitivity the orbits of $H_{\alpha\beta\rho}$ and $H_{\alpha\beta\delta}$ are equivalent. Clearly the only possibilities are O_{16} , O_{36} , O_{45} , or O_{45} , O_{52} . (45,16)=(45,52)=1, so $H_{\alpha\beta}$ is imprimitive by a theorem of Weiss [19; 17.5]. Considering the divisors of 98 this is clearly impossible. Therefore H is 4-transitive and so $H \supseteq A(\Omega)$ [19; 13.9].

b) Ω may be taken to be the cosets of a $P\Sigma U_3(5^2)\subseteq G$. Using the $P\Sigma U_3(5^2)$ located explicitly in G by Magliveras generators of G on Ω were constructed. Much information about G represented as a subgroup of $A(\Omega)$ is contained in [9], and we assemble some of it here.

G is 2-transitive on Ω . If $\alpha, \beta \in \Omega$, $G_{\alpha\beta}$ has orbits $\{\alpha\}$, $\{\beta\}$, and $\Delta(\beta)$, $\Gamma(\beta)$, $\Sigma(\beta)$ of lengths 12, 72, 90 respectively. $G_{\alpha\beta} \simeq Aut(S_6)$. Following [9] $\Delta(\beta) = D \cup D^*$, where $D \cap D^* = \varnothing$, $|D| = |D^*| = 6$. Denote $G_{(\{\alpha,\beta\} \cup D)}$ by K. $K \simeq S_8$, and the action of K restricted to $\Omega - (\{\alpha,\beta\} \cup D)$ is impri-

mitive of block length 6, the blocks of imprimitivity being conjugates of D* under K. For $\gamma \in D$ the diagrammes of $G_{\alpha\beta\gamma}$ and $G_{(\alpha\beta\gamma)}$ are respectively:

$$G_{\alpha\beta\gamma}: \alpha \beta \gamma \stackrel{5}{\mid -1 \mid 6 \mid 6 \mid 6 \mid 30} \stackrel{30}{\mid -1 \mid 30 \mid 30 \mid 60}$$
 $G_{(\alpha\beta\gamma)}: \stackrel{3}{\mid -1 \mid 5 \mid 18 \mid 60} \stackrel{90}{\mid -1 \mid 5 \mid 60 \mid 60}$

 $G_{(\alpha\beta\gamma)}/G_{\alpha\beta\gamma} \simeq S_3$ and acts on the orbits of length 6 and 30.

Take $\sigma \neq 1$, $\sigma \in H_{\alpha\beta} - G_{\alpha\beta}$. Some conjugate of σ restricts nontrivially to Δ (β), since $\Omega - (\{\alpha\,,\,\beta\} \cup D)$ is union of conjugates of D^* . Aut (S_6) is a maximal subgroup of M_{12} . Thus if Δ (β) is an orbit of $H_{\alpha\beta}$, $H_{\alpha\beta} \mid \Delta$ (β) contains M_{12} , so $H_{\alpha\beta}$ has an orbit O_i , i > 12, $i \mid 11.12$ [19; 17.7]. This is impossible given the subdegrees of $G_{\alpha\beta}$. Thus if H is not 3-transitive, $H_{\alpha\beta} \mid \Omega - \{\alpha\,,\,\beta\}$ has orbits (i) Δ (β) \cup Γ (β), Σ (β) or (ii) Δ (β) \cup Σ (β), Γ (β). In case (i) take $\rho \in \Delta$ (β), $\gamma \in \Gamma$ (β). Then $|(\Delta$ (ρ) \cup Γ (ρ)) \cap Σ (β) $|=|(\Delta$ (γ) \cup Γ (γ)) \cap Σ (β) |. Taking $\beta = 2$, $\rho = 14$, $\gamma = 13$ and consulting the appendix the cardinalities are 50 and 30 respectively.

In case (ii) $H \mid O_{174}$ has orbits O_{72} , O_{102} , and an element of order 17 when restricted to O_{72} has 4 + k.17 fixed points, $0 \le k \le 3$. Clearly $H_{\alpha\beta} \mid O_{72}$ is primitive. Using the fact that $G_{\alpha\beta}$ contains elements of order 5 fixing two points of O_{72} and arguing as in a) $H_{\alpha\beta} \mid O_{72}$ is 2-transitive. But 71 is prime. Therefore $H \supseteq A(\Omega)$ [19; 13.10].

Hence H is 3-transitive. From the diagrammes of $G_{\alpha\beta\gamma}$, $G_{(\alpha\beta\gamma)}$ above, either $H_{\alpha\beta} \mid \Omega - \{\alpha, \beta\}$ is primitive or imprimitive with block length 6 and image of imprimitivity in S_{29} . $G_{\alpha\beta\gamma} \supseteq S_5$, so $H_{\alpha\beta}$ is not solvable. Therefore $H_{\alpha\beta}$ acting on the blocks contains A_{29} [1]. Hence a Sylow 17-subgroup of H fixes 74 points, and $H \supseteq A(\Omega)$ [19; 13.10]. If $H_{\alpha\beta} \mid \Omega - \{\alpha, \beta\}$ is primitive $H_{\alpha\beta\gamma}$, $\gamma \in D$, has no O_5 by [19; 17.7]. The possibilities for orbits of $H_{(\alpha\beta\gamma)}$ obtained by joining O_5 to other orbits of $G_{(\alpha\beta\gamma)}$ are O_i , i=23, 65, 95, 83, 113, 155, 173. By the prime factorization of these i, if O_i is an orbit of $H_{(\alpha\beta\gamma)}$ it must also be one of $H_{\alpha\beta\gamma}$. Hence i=173 [19; 17.5], and $H \supseteq A(\Omega)$ [19; 13.9].

c) Ω may be taken to be the set of maximal isotropic subspaces of $V_4(3^2)$ with a unitary geometry. This geometry is classical and we assume familiarity with it. If $\alpha \in \Omega$, let $\Delta(\alpha)$ and $\Gamma(\alpha)$ of lengths 30 and 81 respectively be the nontrivial orbits of G_{α} . Denote the set of blocks of $G_{\alpha} | \Delta(\alpha)$ by $B(\alpha)$ Take $a_1 \in \Delta(\alpha)$ and let $\{a_2, a_3\} = \Delta(\alpha) \cap \Delta(a_1)$. Set $\{i, j, k\} = \{1, 2, 3\}$. Then $\Delta(a_i) = \{\alpha, a_k, a_j\} \cup O_{27}^i$, where $O_{27}^i = \Gamma(\alpha) \cap \Delta(a_i)$; $O_{27}^i \cap O_{27}^j = \emptyset$, $i \neq j$; $\Delta(a_i) \cap \Delta(a_j) = \{\alpha, a_k\}$; O_{27}^i , i = 1, 2, 3 are the orbits of $K_{\alpha a_1 a_2 a_3} | \Gamma(\alpha)$ where K is the kernel of G_{α} acting on $B(\alpha)$. The orbits of a Sylow 3-subgroup P of $G_{\alpha a_1 a_2 a_3}$ are $\{\alpha\}$, $\{a_i\}$, $i = 1, 2, 3, \Delta(\alpha) - \{a_1, a_2, a_3\}$, O_{27}^i , i = 1, 2, 3.

Aut $(G)/G \simeq D_4$, and Aut $(G)_\alpha \simeq K$. $(C_2 \times P\Gamma L_2(9))$. The central involution in $C_2 \times P\Gamma L_2(9)$ inverts every element of K.

Since A_6 cannot be represented reducibly as a subgroup of $GL_4(3)$, $C_{GL_4(3)}(A_6) = Z(GL_4(3)) = C_2$. Also maximal elementary abelian 2-groups of

 $GL_4(3)$ are of order 16, and A_6 can be represented in $GL_4(2)$ in just one way; hence if L is a 2-group and $L.A_6 \subseteq GL_4(3)$, $L \simeq C_2$.

Now suppose that H is rank-3. Then $H_{\alpha} \mid \Delta(\alpha)$ is faithful, since $G_{\alpha} \mid \Gamma(\alpha)$ is primitive. Suppose $H_{\alpha} \mid \Delta(\alpha)$ is imprimitive, and let J be the kernel of imprimitivity. $K \mid \Gamma(\alpha)$ is self centralizing in $S(\Gamma(\alpha))$, so $J \mid \Gamma(\alpha) = K \mid \Gamma(\alpha)$. It follows that if σ is of order 3 in J - K, $\sigma(\Delta(b)) \neq \Delta(b)$ while $\sigma(b) = b$, for some $b \in \Gamma(\alpha)$. This is impossible. By the remarks concerning embedding A_6 in $GL_4(3)$ and $GL_4(2)$ it now follows that J=K or else $J=K.C_2$, and C_2 inverts each element of K. Hence H_{α} represented on $B(\alpha)$ contains $A(B(\alpha)) = A_{10}$. But $A_{10} \nsubseteq GL_4(3)$. This is impossible $(K \simeq V_4(3))$. Suppose, therefore, that $H_{\alpha} \mid \Delta(\alpha)$ is primitive, so that $H_{\alpha} \mid \Delta(\alpha)$ and $H_{\alpha} \mid \Gamma(\alpha)$ are both faithful. Considering the orbits of P it follows that $H_{\alpha} \mid \Delta(\alpha)$ is 2-transitive [19; 13.1]. An element of order 29 fixes at least 25 points of Ω . Therefore $H \supseteq A(\Omega)$ [19; 13.10]. Therefore H is 2-transitive, and $H_{\alpha} \mid \Omega - \{\alpha\}$ is primitive, since III = 3.37 and $G_{\alpha} \mid \Gamma(\alpha)$ is primitive. Therefore H is 3-transitive [13]. If $H_{\alpha\beta} \mid \Omega - \{\alpha, \beta\}$ is imprimitive, the block containing γ , $\gamma \neq \alpha$, β , consists of γ and a union of orbits of P, i.e., blocks must have length 2 or 55. For $\beta \in \Gamma(\alpha)$, $G_{\alpha\beta} \simeq A_6$ has orbit diagramme α β $\begin{vmatrix} 10 & 20 & 20 \end{vmatrix}$ by [4]. Clearly 55 is impossible. Since $A_6 \not\subseteq S_5$, so is 2. Hence $H_{\alpha\beta} \mid \Omega - \{\alpha, \beta\}$ is primitive. Arguing now as in a) and b) using theorems of Cameron and Weiss [19, 17.5], H is 4-transitive and therefore $H \supseteq A(\Omega)$ [19; 13.9].

d) For $x \in \Omega$, $G_x \simeq \mathrm{PSU}_4(3^2)$ with suborbits $\Delta(x)$, $\Gamma(x)$ of lengths 112, 162 respectively. Sylow 3-subgroups of G fix two points and have nontrivial orbits O_3 , O_{27} , O_{81}^j , j=1, 2, 3. If $y \in \Gamma(x)$, $G_{xy} \supseteq A_6$ with orbits O_{10} , O_j^1 , O_j^2 , j=20, 30, 36, 45 [4].

Suppose H is rank-3. By c) [H:G]|8, and $G \subseteq H$. G contains one class of $PSU_4(3^2)$ and $PSU_3(5^2)$ [4], and each of these has trivial centralizer in S_{275} . Hence H/G is faithfully represented in $Aut(J)/J \simeq C_6$, D_4 , for $J \simeq PSU_4(3^2)$, $PSU_3(5^2)$ respectively. Hence [H:G]|2 and $H \subseteq Aut(G)$.

Hence H \(\pm \) Aut (G), and so H is 2-transitive. 274 = 2.137 and H_x is primitive. Therefore H is 3-transitive [19; 31.1]. If H \(\pm \) Aut (G), then H \(\cap \) A (\(\Omega \)) \(\pm \) Aut (G), so H \(\cap \) A (\(\Omega \)) is 3-transitive, and so we may assume that H \(\sum \) A (\(\Omega \)). Then if \(| \langle \sigma \rangle | = 137 \) and H \(\neq \) A (\(\Omega \)), \(\sigma \) fixes one point and is self centralizing. If \(\rho \) normalizes but does not centralize \(\sigma \), then, \(|\langle \rho \rangle | = 136, \(\rho \) fixes exactly 3 points \(\alpha \), \(\rho \) of \(\Omega \) and acts semiregularly on \(\Omega \cdot \), \(\chi \) \(\rho \), \(\chi \) Further \(|\mathbf{N}_{\mathbf{H}}(\sigma) | \neq 2.137 \) [10].

Let S be a Sylow 3-subgroup of G_{xy} such that $\{a,b,c\} = O_3$. By 3-transitivity there is an $A_6 \subseteq H_{abc}$ with orbits O_{16} , O_j^1 , O_j^2 , j=20, 30, 36, 45. Set $H_{(abc)} = M$. $M \supseteq \langle A_6$, S, $\rho \rangle$, where ρ has order 4 or 17. From the orbits of A_6 and S and the semiregularity of ρ on Ω' it follows that M is transitive on Ω' . If $M \mid \Omega'$ is imprimitive, the orbits of S force block length 2. Then O_{10} is a union of 5 blocks, whereas $A_6 \nsubseteq S_5$. Therefore $M \mid \Omega'$ is primitive. Since

 $H_{abc} \triangleleft M$, H_{abc} is transitive on Ω' [19; 8.8], so H is 4-transitive on Ω . Consider M_x , $x \in \Omega'$. By 4-transitivity, there is an element of order 5 fixing $\{a,b,c,x,y\}$. Hence orbits of $M_x \mid \Omega' - \{x\}$ are unions of $\{x\}$, O_{27} , O_{81}^j , j=1, 2, 3, and exactly one has length congruent to 1 (mod 5), all others being congruent to 0 (mod 5). The possibilities are: 1, 270; 190, 81. These both imply that $H \supseteq A(\Omega)$ by arguing as in a, b, c, and using the fact that A_{27} has no proper subgroup of index dividing 190.

APPENDIX

I. Generators of the Higman-Sims group as a subgroup of A₁₇₆.

```
a = (1) \ (i \ , i + 1 \ , i + 2 \ , i + 3 \ , i + 4 \ , i + 5 \ , i + 6), \quad 2 \le i \le 176 \ , \quad i \equiv 2 \ (\text{mod } 7)
b = (1,2) \ (3,9) \ (4,16) \ (5,23) \ (6,30) \ (7,37) \ (8,44) \ (10,25) \ (11,51) \ (12,58) \ (13,65) \ (14) \ (15,72) \ (17,49) \ (18,79) \ (19,45) \ (20,86) \ (21,93) \ (22,100) \ (24,107) \ (26,108) \ (27,32) \ (28,114) \ (29,121) \ (31,87) \ (33,128) \ (34,77) \ (35,46) \ (36,48) \ (38) \ (39,135) \ (40,129) \ (41,75) \ (42,54) \ (43,116) \ (47) \ (50,132) \ (52,59) \ (53) \ (55) \ (56,97) \ (57,130) \ (60) \ (61,142) \ (62,149) \ (63,127) \ (64,92) \ (66,88) \ (67,133) \ (68,156) \ (69,118) \ (70,113) \ (71,163) \ (73,148) \ (74,165) \ (76,81) \ (78,164) \ (80,159) \ (82,106) \ (83) \ (84,167) \ (85,104) \ (89) \ (90,168) \ (91,139) \ (94,124) \ (95,105) \ (96,119) \ (98) \ (99,170) \ (101,162) \ (102,117) \ (103,141) \ (109) \ (110,160) \ (111,140) \ (112,157) \ (115,154) \ (120) \ (122,147) \ (123,137) \ (125,150) \ (126,175) \ (131,144) \ (134,171) \ (136,158) \ (138) \ (143,161) \ (145,176) \ (146,169) \ (151) \ (152,172) \ (153,155) \ (166) \ (173) \ (174).
```

II. Orbits of $G_{1,2}$; $|\Omega| = 176$.

 $A = \{\text{i}\}\,,\, B = \{\text{2}\}\,,\,\, C = \{\text{i4}\,,\,3\text{5}\,,\,3\text{8}\,,\,4\text{3}\,,\,4\text{6}\,,\,8\text{3}\,,\,\text{102}\,,\,\text{116}\,,\,\text{117}\,,\,\text{136}\,,\,\text{151}\,,\,\text{158}\}\,,$

 $D = \{3, 4, 7, 8, 9, 12, 15, 16, 19, 21, 24, 26, 28, 29, 31, 34, 37, 39, 40, 41, 44, 45, 52, 56, 58, 62, 63, 67, 69, 71, 72, 75, 76, 77, 81, 84, 85, 87, 91, 93, 94, 97, 101, 104, 107, 108, 112, 114, 118, 121, 124, 127, 129, 131, 133, 134, 135, 139, 144, 149, 152, 153, 155, 157, 162, 163, 167, 171, 172, 176\},$

 $E = \Omega - (A \cup B \cup C \cup D).$

REFERENCES

- [1] K. I.APPEL and E. T. PARKER (1967) On unsolvable groups of degree p=4q+1, p and q primes, «Can. J. Math.», 19, 538-589.
- [2] P. J. CAMERON (1972) Permutation groups with multiply transitive suborbits, « Proc. London Math. Soc. », (3) 25, 427-440.
- [3] P. Dembowski (1968) Finite Geometries, Springer-Verlag.
- [4] LARRY FINKELSTEIN (1973) The Maximal Subgroups of Conway's Group. C₃ and McLaughlin's Group, « J. Algebra », 25, 58-89.
- [5] M. D. HESTENES and D. G. HIGMAN (1971) Rank 3 groups and strongly regular graphs, «SIAM AMS Proc. », IV, 141-159.

- [6] D. G. HIGMAN (1964) Finite permutation groups of rank 3, «Math. Z.», 86, 145-156.
- [7] D. G. HIGMAN (1966) Primitive rank 3 groups with a prime subdegree, «Math. Z.», 91, 70–86.
- [8] D. G. HIGMAN (1970) A survey of some questions and results about rank 3 permutation groups, «Actes Congres Intern. Math. », 1, 361-365.
- [9] GRAHAM HIGMAN (1967) On the simple group of D. G. Higman and C. C. Sims, «Illinois I. Maths. », 13, 74-80.
- [10] N. Ito (1962) On transitive simple permutation groups of degree 2 p, «Math. Z.», 78, 453-468.
- [11] HEINZ LÜNEBURG Über die Gruppen von Mathieu, « J. Algebra », 10, 194-210.
- [12] S. S. MAGLIVERAS (1970) The Subgroup Structure of the Higman-Sims Simple Group, Thesis, University of Birgmingham.
- [13] P. M. NEUMANN (1969) Primitive permutation groups of degree 3 p, preprint.
- [14] CHERYL E. PRAEGER (1973) On the Sylow Subgroups of Transitive Permutation Groups, «Math. Z.», 134, 179-180.
- [15] CHERYL E. PRAEGER (1974) On the Sylow Subgroups of a Doubly Transitive Permutation Group, & Math. Z., 137, 155-171.
- [16] CHERYL E. PRAEGER (1975) On the Sylow Subgroups of a Doubly Transitive Permutation Group II, «Math. Z.», 143, 131-143.
- [17] CHERYL E. PRAEGER (1975) On the Sylow Subgroups of a Doubly Transitive Permutation Group III, «Bulletin Aust. Math. Soc.», (2) 13, 211-240.
- [18] M. S. SMITH (1975) On Rank 3 Permutation Groups, « J. Algebra », 33, 22-42.
- [19] H. WIELANDT (1964) Finite Permutation Groups, «Academic Press».
- [20] DONALD G. HIGMAN and CHARLES C. SIMS (1968) A Simple Group of Order 44, 552,000, «Math. Z.», 105, 110-113.