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Algebra^ —  Section coefficients and section sequences. Nota di 
M a r ile n a  B arn ab ei, A n d re a  B r in i e G ia n -C a r lo  Rota<*>, pre­
sentata <**> dal Socio G. Zappa.

R ia s s u n to . — Si studia una generalizzazione della nozione di coefficiente multinomiale, 
suggerita in parte da esempi combinatori studiati in precedenza, in parte dall’analogia con la 
teoria delle coalgebre. Si definisce la nozione di successione di tipo sezionale, che generalizza 
il concetto di carattere di un gruppo, e si dimostrano teoremi di finitezza relativi ad una 
algebra di operatori invarianti per traslazione ad essa associata.

I. Introduction

A fundamental problem of combinatorics is that of studying the ways 
of piecing together objects of given shapes to give an object whose shape is 
also preassigned, or else the inverse problem of finding ways and their number 
of splitting a given object into objects of given types. We introduce here two 
algebraic structures which we believe to be suggested by this problem, namely, 
section coefficients and section sequences. In this note we give, together with 
the definitions, some basic finiteness results and a few relevant examples.

We were led to these notions by previous work in two different subjects: 
the theory of coalgebras ([13]), further developed in the present spirit in fi] 
and [5], and the theory of polynomial sequences of binomial type ([8], 
[n ], [12]).

2. Basic definitions

Given a set P whose elements will be called pieces, a system of section 
coefficients is, for each n , a function indicated by the symbol

(*) L / °  1
U h  a 2 ' ' ' a n j

with a{e P, taking values in a given field of characteristic zero (in fact, in 
most combinatorial examples taking non-negative integer values), to be read 
“ the number of ways of splitting the piece of type a0 into a sequence of pieces 
of types ax , a2, • • •, an”. These coefficients are subject to the following iden­
tities:

if a — b
, a , b € P ;

otherwise

(*) Research supported by NSF Contract NSF : MCS7308445.
(**) Nella seduta del 12 gennaio 1980.

(consistency) :T ]
. / V  
\  0
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cs2 ) (fifiiteness): for every a0e P and for every n >  1 there is a finite 
number of sequences ax , a%, • • •, an such that (*) is not equal to zero;

^3) (coassociative law): for every n >  1 we have:

a° 1 =  V  [  a° 1 T  P 1 _ _

# 1  <Z2 * * * &n\ p eV  * * a k P \  L*%+1 * \ ' - a nJ

=  2 '  \  ^  1 \  a° 1 , for every k <  n ,
V e P Ya \ a k \  Y P a k-\-\ ’ * * a n \

A related but less important concept is that of cosection coefficients on a 
set Q whose elements will be called copieces, in symbols:

CLl #2 ’ * ’ &n 
#0

These satisfy the analogs of properties ^1), ^ 3) but, instead of cs2 )y they 
satisfy the following cofiniteness property: for every sequence ax, a2 , • • •, an 
there is a finite number of a0 such that (**) differs from zero.

Cosection coefficients (but not section coefficients) are nothing but the 
well-known structure coefficients of a ring.

The empty piece 0, if any, is defined by the identity:

a° 1 =  j  a°
a l  * * * a k 9 ^ + 1  * * * a n\  U l  * * * ttk a k+1 ’ * * a n 

and similarly the empty copiece (or zero) 0 is defined by 

a l  * * * a k ® a k+l * * * a n \    l a i ’ * * a k a k+1 * * ’

a 0 J L a o

A system of section coefficients is said to be augmented if there is 
a function e (augmentation) defined on the pieces with scalar values 
such that:

£  f  1 6 (p ) —  [  * °
p e  P La l  ’ * * a k P a k+1 * * * a n \  Ya \  ' ' ’ a k a k+1 ' * * a n_

Finally, a system of section coefficients is said to be well-augmented 
when there is an augmentation e, an empty piece 0, and e (p) =  0 if p  0, 
while e (0) =  1. "

It is possible to associate a coalgebra with a distinguished basis to every 
augmented system of section coefficients (though we shall not do so here). 
By this association some of the results below can be used to yield simple 
proofs of several results on coalgebras.
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Two guiding examples of section coefficients are the following:
a) Boolean coefficients', here, P is the family of all finite subsets of a 

given set, and

r A0 ] _ / 1 if A,UAaU • • • U A n =  A0 and A , n A , =  0 
LAi A2 • • • A„j \ o  otherwise. ôr l

An analogous definition without finiteness conditions gives an example of 
cosection coefficients, which we call coboolean coefficients. In both cases both 
the empty piece and the empty copiece are the empty set.

b) Partition coefficients', let S be an infinite set. Consider the family IT (S) 
of all partitions tz , g  , t  , • • • of finite subsets of S, ordered by refinement 
(thus, two comparable partitions have the same support). The set P consists 
of all ordered pairs [tt , g ]  in IT (S) with tz  <  g  (that is, tz  is finer that a ) .  Set

I" [ tz , g ]  1 _  /  1 i f  ^  =  Tr' , cr =  g ' , T =  t '

t ] \p’) \ o  otherwise.

These examples are the simplest of a host of combinatorial examples 
generalizing the notion of hereditary bialgebras introduced in [7].

Actually, in most examples several pieces can be used interchangeably. 
This leads us to introduce an appropriate equivalence relation on a set of
pieces. Say that an equivalence relation ^  on the set of pieces P is
admissible whenever

with ax a2,

where we indicate by p  the equivalence class of the piece p.
Under these conditions one defines a system of section coefficients on 

the quotient set P ^  — P, called the reduced system, by setting:

0 ,0 , . . . 'b ]  ’ a e ä .

We give three examples of reduced systems: the first is complete reduction. 
Here, one considers all bijective functions /  : P -> P such that

r ^ 1 =  r m  1

and one sets p  ~  q whenever f ( p y — q for at least one such functions.
The second is the special case of complete reduction for the Boolean 

system. The reduced section coefficients turn out to be the ordinary binomial 
and multinomial coefficients.
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The third is obtained from partitions, setting two segments [tc , a] and 
[tu', g ']  to be equivalent whenever they are isomorphic as partially ordered 
sets. It turns out that each equivalence class (or type) is characterized by a 
vector X =  (n2 , n3 , • • •), where n% is the number of blocks of g which are cut 
into i blocks by tu. Under this admissible equivalence relation the reduced 
section coefficients are the Faà di Bruno coefficients'.

X I number of refinements tu of type [x of a partition g

[A vj of type X, such that [re , g ]  is of type v.

In the particular case where X is the type of a partition having only one 
block with n elements, denoted by 8 n, one computes:

yL v

where (x — (n2 , n 3 , • • •), provided that v is the type of a partition having 
only one block, of cardinality n2 +  nz +  • • •, and zero otherwise.

3. F initeness theorems

For a fixed piece i and fixed integers n and r, with r <  n, we denote 
by Lntr(i) the set of all functions a (j\ , j 2, • • •, j r) with values in K of 
r variables j \  , j 2 , • • •, j r ranging over P, satisfying the following linear 
equations:

Ä / '0, , 7ä ’" ' J r ) [ v - V i - • ■ K h K + v - h j r h r + i -•
for every A , • * •, bkl , bk l + 1 , • * •, bkr+1 in P and for every choice of places 
A , k2 , • • •, kr+1 (note that kr+1 +  r =  n). We call these the structural 
equations of the system of section coefficients.

We also set Sn (i) to be the set of all pieces p  such that

i
b\ * * * bk pbk+1 • • • nn

for some choice of bx , • • - , bk , bk + 1 , • • •, bn in P and some place k. Finally, 
we set S (i) =  (J Sn (i), and call S (i) the support of the piece i.

n> 2

Theorem i .

a) for n >  2 r. +  1 we have

L n,r (0 — ^n+l,r (0 >
b) similarly we have

s  (0 =  s 2(i) U S3 (i) , 

in other words, every piece i has finite support S (i) ;

n2\ n>, !. . .  (2!)»2 (3 \)n3 • ..  (n — 2 n2 — 3 nz ----- •) !
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c) if the system is augmented, then

s O') =  S3 (i) ;

d) if the system is augmented, then

L„+lj, O') £  Lre,r (i) for n > r ;

e) for augmented systems and for n >  2 r +  1 we have:

^n,r (0 — CO »
/ )  if the section coefficients have non-negative real values, then, 

setting i< : j  if either i = j  or i G S (y), then the relation <  is a quasi-order.

4. Sections sequences

We now take a set P of pieces and a set Q of copieces; a sequence 
of scalar-valued functions p\(x)  with x e Q ,  indexed by the pieces i , is said 
to be a section sequence when the functions are linearly independent and 
they satisfy the identity

J ? p [ /  J  Pi ^  pk (y) s [
ze Q  L

X y A(*)

for every i e P and x  >ye Q-
This concept originates from the following classical special cases: Let Q 

be a group and set
[* y 7  ̂0 , x , y  , z  e Q

whenever xy — z. Choose P to be the set of characters of the group, and set

if and only if i  =  j  =  è; then, a section sequence is simply a character of 
the monoid Q. Thus, section sequences generalize the notion of group 
character. A particular case that has been widely studied is that of poly­
nomial sequences of binomial type, namely, real-valued polynomials pi(x)  
of degree i  with x  real, satisfying the identity:

Pi(x + y )  =  . 2  ( ) ) pj (x)pk{y)  ■\ J  I

These are section sequences, the copieces being the real numbers with
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if and only if 2 = x  +  y, and the pieces being the integers with the binomial 
coefficients as above.

By way of a mere example we define a section sequence analogous to 
the preceding for the Faà di Bruno system. Let Q be the monoid of formal 
power series:

/ ( 0  =  S t t ^ > *, =  1
i > l  Z!

under functional composition, and set

[ /  / I  if s - f = h
L h J \  0 otherwise.

With P as above, we say that a sequence px( f )  is a Faà di Bruno sequence 
when it satisfies

2  L x J  p» c/) A  ( b)  =  a  (b •/)  ■tx,v

Thus, a Faà di Bruno sequence is a section sequence with formal power series 
as copieces and vectors X as pieces. The simplest Faà di Bruno sequence 
is obtained by setting

p \ ( f )  =  ■ ■ ■
if

and X.= («a, »8)- • •) ■” 1 Z:

where x i are algebraic trascendentals for i >  2. From this example the pur­
pose of the present definition should become clearer.

We intend to develop for Faà di Bruno sequences, as well as for more 
general section sequences, a functional calculus similar to the umbral calculus 
for sequences of polynomials of binomial type. This note is meant as a first 
step in this direction.

5. Operator calculus

We define the left and right shift operators F  ̂ and Ê . relative to a given 
section sequence as follows:

f * a O )  =  2  \y . x\ pi(?)
zeQ L z  J

e * a o o  =  e  [* . Pi(*)zeQ L z  J

for every i in P and for every y  in Q.
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Denoting by P the vector space spanned by the section sequence pi (x)f 
i e P, we say that an operator T : P —>■ P is left (or right') shift-invariant when 
T commutes with all the Fx or all the E^, respectively. Shift-invariant ope­
rators form an algebra. Assuming that the system is augmented, one can 
show that each of these algebras is isomorphic to the umbral algebra. This 
is the algebra of linear functionals L , M, - **  on P with multiplication * 
(convolution) defined as

< L * M | A> =  2  [ . * J  <L | ^><M| A>.
j , k e  P U  t Z\

One can show that convolution is independent of the choice of the section 
sequence.

Among shift-invariant operators we note (in analogy with the boson 
calculus) the left and right annihilation operators A# and B&, defined as 
follows:

A* f t  (* )=  2^, [ i  ■] f> w  

B =  ^ .  [j,- * J

for every i in P and for every x  in Q.
Annihilation operators take the role played by derivatives in the special 

case of the umbral calculus, and the analog of Leibniz’s rule for successive 
derivatives is

Similarly, one can obtain an analog of Taylor’s formula expressing every 
(left, say) shift-invariant operator T as a formal power series in the annihi­
lation operators:

T — Y, d i  B, , a i =  T p i ( 0 ) ,
i  E P

assuming the existence of zero.
In particular, for the shift operators ¥y one obtains

L  A (x) =  2  Pi (y) A (A
j e p

in close analogy with Taylor’s formula.
Sections sequences enjoy finiteness properties under translation remini­

scent of polynomials and exponentials:

Theorem 2.

a) Let pi (x), i e P  be a section sequence; then for every i e p  the 
subspace of P spanned by Ev pi (.x), as y  ranges over Q, is finite-dimensional;
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b) under the same assumptions, the subspace spanned by A j p i (x) 1 

as j  ranges over P, is finite-dimensional.

For the Faà di Bruno system it turns out that right annihilation opera­
tors are products of the special annihilation operators BÄ:

These turn out to be derivations: if X — (am , af), say, with am =  1 = an,
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and / ( 0  =  2  “Tf A  thenk h •

P  ̂GO ® A x n x n Bh xm -f~ xm BÄ x n .

R e fe r e n c e s


