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Geometria. — 7angent flag bundles and [acobian varieties. Nota 11
di Samuer A. ILori e AuBrey W. INGLETON, presentata® dal
Socio G. ZAPpaA.

RIASSUNTO. — Definiamo le sottovarietd « di Ehresmann» di un fascio di bandiere
tangenti VA sopra una varietd proiettiva algebrica irriducibile non — singolare, definita sopra
un campo algebricamente chiuso. Pol mostriamo, usando una formula di intersezione, che
le classi di cicli di tali sottovariethy «di Ehresmann» nell’anello di Chow di V& pud essere
determinato usando una conoscenza del pil facile calcolo corrispondente su una varietd di
bandiere F (# 4 1). Questa teoria & poi applicata al calcolo delle classi di cicli di sottova—
rietd Jacobiane di V che sono definite mediante una famiglia indiciata di « nests» di sistemi
lineari di « primals» in V.

3. THE INTERSECTION FORMULA

In this section, we shall prove one of the main results of this paper.
It is the intersection formula which gives the intersection of any ‘* Ehresmann’
class [k ;& ]VA]* with one of the classes w (g ;%] VA) of codimension one.
Monk in [8] proved a similar intersection formula for the flag manifold
F(n -+ 1). To prove the formula, we shall first find a specialisation of the
linear systems involved in the definition .of the ‘ Ehresmann’ subvariety
(k;Z |VA]. We shall then use the specialisation to break the intersection
into components and conclude the proof by finding the multiplicities with
which all the components occur. But first we need two lemmas about
indices.

Let C (k) be the set of pairs (7,7) satisfying conditions (i), (iii), (iv)
only of Definition 2.1. Also for such pairs (7,/)e C (k), put

d-zj<k) = I{o:"°;i}\{k0:“'1ki} | .
Let :

C,le)={i:(¢,NeC} , Co)={j:(,)eC )}
Ci()={:¢,NeCE} , Co={;j:G,)eC&}.

Note that C, (k) = CL (k) and C, (k) = C, (k). The following lemma shows
that if je Cy (k) or C,(k), then any condition imposed on flags by a pair
(¢,7)eC (k) is implied by a condition (¢',7)eC (k).

(*) Nella seduta del 15 dicembre 1979.
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LEMMA 3.1. Lot k= (ko, -+, k,) be an index and let (¢,j)e C (k).
Then if (ky,-++ b)) #(0, /) '

dyj (k) = dy (R)
where s (s <t) is the greatest member of {ko,- -, ks} such that (s ,j)eC (k).

Proof. 1f(¢,)eC (k), then s = ¢ and the lemma follows. If (7, ) ¢ C (&),
then it follows that t — 1€ {4,, -+, #;}. Hence (! —1,;)e C (k) and

dpn,; (B) = d;; (B) .

If ¢—1,/)eC(k), then the lemma also follows. If (z—1,7)¢C (&),
continue as above. After a finite number of steps, we have that (7, j)e C (k)
and (7, 7)¢ C (k) for s < ¢ <¢ (since (ky, -, &) % (0, -+, ), but (s, /))eC (k).
Since in this case

{5’5+ I y"')f}g{éOy""kj}
it follows that

d,y () = dy (B)
This completes the proof of the lemma.
Remark. The above lemma shows that both C (k) and C (k) give rise
to the same ‘ Ehresmann’ subvariety but that C (k) gives the minimum
independent conditions to be satisfied.

The following lemma, which is a technical one about indices, will be
needed in the proof of the intersection formula.

LEMMA 3.2. Let k= (ky, -, %,) be an index such that
Cl <k> = {Z‘O PR Zm}

is in aseendz’ég order and let & = (ko ,- -, ky) be another index got from k by
veplacing 4y, + dpyy —dp, — 1 (=5 —1) in R, where

dh:]{O"”’Z'h_l}m{éo;”')éq}I’

by the smallest integer s' = s which is not in {ky, -, ky. Then we have the
Sollowing ’

O CE)VEG2AC, RV {s},
Gi) If s=s" and (s,j)e C(R), then (¢,7)€C (k) and
dy (W) = diyy (B) + 1.

Gii) If s and for anmy j, such that k; comes before s and
(s,/)eC (R, then (s,j)e C(k) and

dy (K) = .dsj OF



58 Lincei - Rend. Sc. fis. mat. e nat. —~ Vol. LXVIII - gennaio 1980

(v) If s 5" and for any j, such that k=5 or kj comes after s
and (s,7)e C(R'), then (4,7)e C (k) and

d; (k) =d;,; (k) + 1.
Proof.

(i) Note that the number of elements in {£,,---, £,} which are not
greater than 7, but less than #,,, is &y —d, —1 and they are precisely

t1,otz2, g+ —dy—1=s—1}.
Thus the following numbers occur in k' in the order shown
Z.h)."yih+I"'.!ih+dh+1—dh—27”.)sl'

Hence since s—1¢ {#,,--, & and se {ky, -+, &}, then seC,(F). Also
if s—1 74, then s—1¢C, (k) and 7,eC, (). But if s —1 =7,, then
in¢ Co(R).

(i) If s = s with (s, 7)eC (&), then
i€ ko, oo by and 4 —1¢{ky, o Ayt

Also s > 7, which implies that 4;>4,; and since either £; = k; or kj= s,
then £; >4,. Now '

(o, s+ 1, iyt dp—dy—13 S {Bo, o, &} and ki =k, < s

imply that £;,, <4, Hence (¢,,7)eC (k). Now since
{nydnt+ 1, ot dh—dy—2,s5t S {'é(,),"','é;} )

we have

d;(R) = dji (k) + 1.

| (i) If s % and for any j, such that 4; comes before s’ and
(s,7)eC (k"), then

{’é(/)y t 'é.;} = {'éo," 'ykj} .
%;4, cannot be equal to s'. Hence (s,7)eC (k) and
dy (R) = d,; (k).

(iv) Now suppose s % s’ and (s,7)eC (k') with £;=s" or 4; coming
after s'. Then since 7, comes before s, we have

in€ {bo, 0, B}

Either £;=s-—1 or 4; = 4;=>s implies that 4;> 3.
Now

7

. 7
ki = b € {dp, s — 1,8} and £, <s
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imply that
r .
ki = kjy <1y

Hence (i,,7)€C (k) and
dy(BY =100, i, in + 1, sPN{o," s bepmsy Sy Bpia o+, B} |
= {0, -, 4 \{fo, -, &} | +1, since s—1¢{k, -, £}
= dij; (R) + 1.
We“'now state the main result of this section as follows,
THEOREM 3.3. (The Intersection Formula) (Cfr. 2.3 in " [6]). For a
sufficiently general nest of linear systems
L bycFyc P
we have, for any (g ,t— )—index R, 0 <g <d,
w(g; LIV R L IVEP =2 [(Ro, o, kia s bty b, ) F | VO

where for each i =0, - g, ki is the smallest integer > k; which is not in

{ko -+, by} and the summation is over all i such that theve is no b ,i < h <gq,
for which k; < &, < ki )

Proof. The proof of the theorem will be in stages. First we shall find a
specialisation for the linear systems involved in the definition of [k ;% | VA]*
and w (¢;%|V®). Note that w (¢;%| VA is the cycle class of the sub-
variety of ﬂags satisfying the single condition

dim%,,,(¢,S) =o,

where Z,,; is the linear system of primals on V of dimension ¢ such that
Z44a is a subsystem of £;. Similarly, [k;Z{VA] is a subvariety of flags
satisfying the conditions

dimZ;(j,5) =>d; k) —1, G,)HeC ).
Let C, (k) = {4,, -+, 7} be in ascending order. For Z=o0, .-, m let
dy=1{0, 5 —1} O {ko, -, k1.
We now specialise by putting

$q+1:$;+1 s $;+1n$i;,=$(;h (h:l,-”,m),
and if dy, > o, ,
Lo O Loy =Zy.
Thus v
Zisa +$.;,, =$z{;’,_1+d;,—dh_1 <&,
and

’ "
gdo __“'(Zdoggio-
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We, therefore, have the following inclusions

g(;oc,?;lc ~~-c$‘;mc$;ﬂ
@ (@ (@ 0
giocg’ilc"'cgimcgt’

The next stage of the proof is to use the above specialisation to break
the intersection into components. A flag is thus in the intersection if S
satisfies all the conditions defining [k ;% | V2] and also

S, is tangent to a member of £, but not of ,SP,;m,
or S, is tangent to a member of Z,;m but not of f,flm_l e
or S, is tangent to a member of 5?.;1 but not of 3&0,

or S, is tangent to a member of Z:lo, if dy > o.

The above conditions are mutually exclusive by the conditions of the
specialisation. ‘

For a general 4,—1 </4 <m, where we put dpn=¢ +1 and
i, =0=4d_,, consider the case where S, is tangent to a member of ,?%Ll
but not of gd;; Thus S; is tangent to a member of fd,m for all j <g¢
but not to any member of $dh By the above specialisation,

17 rr
Ly, + gd/m =ZLirip-a, =Zs

and so a flag S is in this section of the intersection if S satisfies all the
conditions satisfied by [k;% | V2] as well as

dim £, (j,S) = di,; (k) , Gn,1)eC (B).

Now consider the index k’ obtained from k by replacing s — 1 in & by the
smallest integer s’ = s which is not in {&,,-- -, kg and such that if s — 1 =4,
there is no », p <r <g¢, for which s—1 <4, <s'. This implies that
if s #£ ', 5" ¢ C, (k) since then s'— 1 comes before s in k. It follows from
Lemma 3.2 that

{an VC (B) =C,(B) U {s}.
If s —1544,, then C,(R) =C,(k) U {s}. Butif s —1 =4, then 4, ¢C, (k")
and for any (,,/)eC (k),
dy; (R') = diys (B) -
Thus in this case any conditions imposed on flags by #, in [k; & 1VA] are
implied by the conditions imposed on flags by s in [k : 2 |VA].  From
the above, one concludes that the component of the intersection is [k ; % | VA].

Finally, to conclude the proof, it remains to find the multiplicities with
which the components occur in the intersection. Let U be a subvariety
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of V. Then we have the following diagram

j* VA 0 VA ] W
F@ F(a) F(d+1)
b ; ' ; |
U A\ P

n

where W —P, is the flag bundle, fibre F (4 + 1), associated with the
tangent bundle T (P,) of P, and 6, § are injections. Thus VA s a
subvariety of V2. When dim (U)=1and if ¢eU is any point of U, then
we have the diagram

=3

F=F(@) — 1 & pvh VA w
} ¢ ; ! ; !
(&) U, \Y P,

* 0, may be defined as

0, (Soc=+ - =S4y) = ()< (&) + Sy -+ < (&) + Suy -
Note that .
6 ([k; £ | VAT = [R; 2" | j* VAR

where £’ is the linear system cut on U, by the linear system on V, and

O ([k; & | /AT = 01 ([k; 2 | j+ VAP,
for any linear systems %, %" of primals on U,. Hence
00 07 6% ([ WI') = 016" ([k; 2 | VAT")
=0 (% ;2 | VAT
= [¥; F]"
where Q(’),g(ll) are linear systems cut on V and U, respectively by the
primes through E, ; of the fixed flag
Egc---cE,,<P,
and where if k= (), -+, &), then k' = (hy—1 -+ k, — 1). For instance

00" (w (g;Z | V) =w(g—1;F).
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Thus if 6% ([k; £ | VA]¥) # o0, then 8, 6% (w (¢; £ | VD). [k; L | VA]® is the
intersection on F (&) of w (¢ —1; F) with an Ehresmann class in A (F (&)).
Monk in [8] has proved that such an intersection splits into components
with multiplicity 1 for the complex case but the proof is essentially the
same for any algebraically closed field. 6; is the zero map only in the
top dimension, i.e. in classes which are multiples of the class of a point
in A(7*V%). For dimension reasons, the intersection of such a class with
w(g; % |*VP) is zero. Thus we have proved that if dim (U) =1, then
the components of the intersection

0 (w (g: 2 |V [R; £ | VAP
occur with multiplicity 1. We shall now prove unit multiplicity for
w(g; L |V [k; £ | VAT

Consider the diagram

j* VA [ AiL_.~~_> -\7A
|
} ) }
Uiy ! \

where dim (U) =4 — 1. Then by induction, one shows that the components
of the intersection )

0% (w (g7; 2 | VD) [k; L | VAT

occur with multiplicity 1. In this case 6* is the zero map only in the top
dimension, i.e. in classes of a point in A(VA)‘ For dimension reasons, the
intetsection of such a class with w(g; % | VA) is zero. Thus all the non-zero
intersections of the type

w(g; L | VO [k; &L | VA

have non-zero images by 6* and this proves the required unit multiplicity.
This also completes the proof of the intersection formula.



