ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti

Graziano Gentili

Differential Geometry of Light-Cones

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **68** (1980), n.1, p. 44–51.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1980_8_68_1_44_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/ Geometria. — Differential Geometry of Light-Cones. Nota di GRAZIANO GENTILI ^(*), presentata ^(**) dal Corrisp. E. VESENTINI.

RIASSUNTO. — Si studia la geometria Riemanniana invariante dei coni-luce di \mathbb{R}^n . Si determinano tutte le isometrie di un tale cono e si discute la loro estendibilità olomorfa al dominio tubolare associato al cono.

A cone in \mathbb{R}^n is called *regular* if it contains no affine line. Let $V \subset \mathbb{R}^n$ be an open convex regular cone, and let V' be the dual cone of V, i.e. the cone of linear forms x' on \mathbb{R}^n such that $\langle x, x' \rangle > 0$ for all $x \in \overline{V} - \{0\}$; V' is also an open convex regular cone of \mathbb{R}^n . Henceforth, all cones will always be assumed to be open convex and regular.

The *characteristic* function (see [10]) of the cone V is the C^{∞} function (defined on V)

$$\Phi_{\mathbf{V}}(x) = \int_{\mathbf{V}'} \exp\left(-\langle x, x'\rangle\right) dx' \qquad (x \in \mathbf{V})$$

where dx' is the Lebesgue measure on \mathbf{R}^n . The function $\log \Phi_V$ is strictly convex, hence the quadratic differential form

$$\sum_{i,j=1}^{n} \frac{\partial^2 \log \Phi_{\mathbf{V}}}{\partial x_i \ \partial x_j} (x) \, \mathrm{d}x_i \, \mathrm{d}x_j$$

defines a (positive definite) Riemannian metric of class C^{∞} on V. Since every linear automorphism Ω of the cone V is such that

(1) $|\det \Omega| \cdot (\Phi_{\mathbf{V}}(\Omega x)) = \Phi_{\mathbf{V}}(x)$ $(x \in \mathbf{V})$

then the above defined Riemannian metric is invariant under the action of the group GL(V) of all affine (hence linear, see [10]) automorphisms of V. In the following work, we will consider only this invariant Riemannian metric of V.

The linear form $-d (\log \Phi_V)_x$ is a point in V', which will be denoted by $\star x$. The function $x \mapsto \star x$ defines a C^{∞} diffeomorphism of V onto V'. Moreover, if V is affine-homogeneous (i.e., GL (V) acts transitively on V), then $\star (\star x) = x$ for all $x \in V$, and also the diffeomorphism $x \mapsto \star x$ is an isometry of V onto V' (with respect to the invariant metrics of V and V'). References for these facts are [7], [9], [10].

(*) Scuola Normale Superiore. Piazza dei Cavalieri, 7, 56100 Pisa.

(**) Nella seduta del 12 gennaio 1980.

The following problems arise naturally.

The first concerns the determination of the whole group of isometries for the invariant Riemannian metric of a cone.

Let $T(V) = \{x + iy : x \in \mathbb{R}^n, y \in V\} \subset \mathbb{C}^n$ be the tube domain associated to the cone V; the cone V will be identified with the subset $iV = \{iy : y \in V\}$ of T(V). The second question deals with the extensibility of the isometries (for the Riemannian metric of V) to holomorphic automorphisms of the tube domain T(V). In other words the question is: which isometries of V can be obtained as restriction to iV of biholomophic automorphisms of T(V) leaving iV invariant?

This article will report some results obtained for the class of light-cones. This is an ample class of affine-homogeneous cones in \mathbb{R}^n , which are selfadjoint, in the sense that the canonical inner product defining the Euclidean distance in \mathbb{R}^n identifies these cones with their duals. In dimension $n \ge 2$, the light-cone of \mathbb{R}^n consists of all $(x_1, \dots, x_n) \in \mathbb{R}^n$ such that $x_1^2 - \dots - x_n^2 > 0$ and $x_1 > 0$. We shall consider \mathbb{R}^+_{\star} (the set of strictly positive real numbers) as the one-dimensional light-cone.

In n. 1 the light-cones of dimension $n \ge 3$ will be realized as cones of "matrices" L_n^+ . In terms of this realization we will compute the characteristic function, the Riemannian distance, the mapping \star , and we will describe the geodesic curves. Section 2 deals with the construction of the entire group of isometries for the light-cones of dimension $n \ge 3$. Section 3 solves the extensibility problem. Finally section 4 deals with the one—and two—dimensional light-cones for which a different approach has to be divised.

Proofs and further details will appear elsewhere.

1. The light-cone L_n^+ $(n \ge 3)$ and its invariant Riemannian metric.

Let $\mathbf{L}_n (n \ge 3)$ be the set whose elements are the matrices $\begin{pmatrix} x & z \\ z & y \end{pmatrix}$ with $x, y \in \mathbf{R}$ and $z \in \mathbf{R}^{n-2}$. This set, with addition and multiplication defined in the obvious way, is a real vector space of dimension $n \ge 3$. Let $h = \begin{pmatrix} x & z \\ z & y \end{pmatrix}$ and $k = \begin{pmatrix} t & w \\ w & u \end{pmatrix}$ be elements of \mathbf{L}_n , and let us define

 $h \cdot k = \begin{pmatrix} xt + z \cdot w & xw + uz \\ tz + yw & uy + z \cdot w \end{pmatrix}$ $h \circ k = \frac{1}{2} (h \cdot k + k \cdot h) \in L_n.$

 (L_n, \circ) is a (non associative) commutative algebra with identity $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$; in particular it turns out to be a Jordan algebra (see [4], [6]).

The bilinear map

(2)
$$(h, k) \mapsto tr (h \cdot k) = xt + uy + 2 \mathbf{z} \cdot \mathbf{w}$$

turns out to be a scalar product and, if $\| \|$ denotes the norm it induces on L_n , the following relations hold, for a suitable $r \in \mathbf{R}^+_{\mathbf{x}}$ (see [6])

(3)
$$\| h \circ k \| \leq r \| h \| \cdot \| k \|$$
$$\| h^{m} \| \leq r^{m} \| h \|^{m} \qquad \forall h, k \in \mathcal{L}_{n}, \quad \forall m \in \mathbb{N}.$$

Formulas (3) allow us to define both the C^{∞} function exp, from (L_n, \circ) in itself, $h \xrightarrow{\exp}_{m=0}^{\infty} \frac{h^m}{m!}$, and its inverse function log, defined on $\exp(L_n)$.

If $q \in O(n-2)$ is an orthogonal matrix, then the linear map

(4)

$$\begin{aligned} \mathbf{T}_q : \mathbf{L}_n \to \mathbf{L}_n \\ \begin{pmatrix} x & \mathbf{z} \\ \mathbf{z} & y \end{pmatrix} \mapsto \begin{pmatrix} x & q \cdot \mathbf{z} \\ q \cdot \mathbf{z} & y \end{pmatrix} \end{aligned}$$

is an algebra-automorphism of (L_n, \circ) .

If $a \in GL(2, \mathbb{R})$, $\mathbf{z} = (z_3, \dots, z_n) \in \mathbb{R}^{n-2}$, $\mathbf{w} = (w_3, \dots, w_n) \in \mathbb{R}^{n-2}$, let us define

 $g_a: L_n \to L_n$

(5)

$$\begin{pmatrix} x & z \\ z & y \end{pmatrix} \mapsto \begin{pmatrix} t & w \\ w & u \end{pmatrix}$$

where $\begin{pmatrix} t & w_3 \\ w_3 & u \end{pmatrix} = a \begin{pmatrix} x & z_3 \\ z_3 & y \end{pmatrix} t_a;$ $w_4 = z_4 (\det a); \ldots w_n = z_n (\det a);$

the linear map g_a is an automorphism of the vector space L_n .

If $l_n \subset \mathbf{L}_n$ is the set of matrices $\begin{pmatrix} x & z \\ z & y \end{pmatrix}$ such that z has the last n-3 components equal to zero, then for all $h \in \mathbf{L}_n$, there exists $q \in \mathcal{O}$ (n-2) such that $\mathbf{T}_q(h) \in l_n$. In particular $\mathbf{T}_q(\exp(h)) = \exp(\mathbf{T}_q(h))$ and, if $\mathbf{T}_q(h) \in l_n$, $g_a \cdot \mathbf{T}_q(\exp(h)) = \exp(g_a \cdot \mathbf{T}_q(h))$ $(a \in \mathcal{O}(2))$. Analogous identities hold for the logarithm.

The "determinant" of the matrix
$$h = \begin{pmatrix} x & z \\ z & y \end{pmatrix}$$
 will be the real number

 $xy - |z|^2$, denoted by det (h). Every $h = \begin{pmatrix} x & z \\ z & y \end{pmatrix} \in (\mathbf{L}_n, \circ)$ such that det $(h) \neq 0$ and that xy > 0, has a unique inverse element $h^{-1} \in (\mathbf{L}_n, \circ)$, expressed by

(6)
$$h^{-1} = \frac{\mathbf{I}}{xy - |\mathbf{z}|^2} \cdot \begin{pmatrix} y & -\mathbf{z} \\ -\mathbf{z} & x \end{pmatrix}.$$

If we set, for $n \ge 3$,

$$\mathbf{L}_{n}^{+} = \left\{ h = \begin{pmatrix} x & \mathbf{z} \\ \mathbf{z} & y \end{pmatrix} \in \mathbf{L}_{n} : \det(h) > \mathbf{o} , \quad x > \mathbf{o} \right\}$$

then L_n^+ is a self adjoint (with respect to the scalar product defined in (2)) affine-homogeneous irreducible (see [9]) cone, isomorphic to the *n*-dimensional light-cone.

For all $q \in O(n-2)$ and for all $a \in GL(2, \mathbb{R})$ the functions T_q and g_a defined in (4), (5) are elements of $GL(L_n^+)$; besides that, for every $h \in L_n^+$, there exist $q \in O(n-2)$ and $a \in GL(2, \mathbb{R})$ such that $g_a T_q(h) = I$. Now, using essentially property (1), we obtain for the characteristic function of the cone L_n^+ (up to a positive constant factor)

$$\Phi_{\mathbf{L}_{n}^{+}}(h) = (\det(h))^{-(n/2)} \qquad (h \in \mathbf{L}_{n}^{+}).$$

The differential of log $\Phi_{L_n^+}$ at the point $h \in L_n^+$ is represented by the vector $-\frac{n}{2}h^{-1}$ (see (2), (6)), hence

(7) $\star h = \frac{n}{2} h^{-1}$

The unique fixed point of the involution \star is $\sqrt{\frac{n}{2}}$ I.

The problem of finding a geodesic curve joining any two points of a cone (see [9]) can be solved directly in this case, restricting the system of differential equations for geodesics to the subset D of diagonal matrices and integrating it. We obtain that, given any two points of L_n^+ , there exists one and only one geodesic arc joining the two points (up to parametrization) (see [3]). Moreover this unique geodesic is a planar curve. The geodesic l joining I and the point $X \in L_n^+$ is given by

$$l(s) = \exp(s \cdot \log X) \qquad \qquad -\infty < s < \infty.$$

Integration of the "length element" along a geodesic arc lying in $D \cap L_n^+$, proves that the Riemannian distance from I, $d(I, \cdot)$, is

$$d(I, X) = \sqrt{\frac{n}{2}} \|\log X\| \qquad (X \in L_n^+).$$

 $(h \in \mathbf{L}_n^+)$.

2. The group of isometries.

In the case of light-cones of dimension $n \ge 3$, we determine the whole group of isometries. This is made possible by the explicit computation of the sectional curvature at a point of the cone.

 $T_p(L_n^+)$ denotes the tangent space of L_n^+ at the point $p = \sqrt{\frac{n}{2}}$ I. $T_p(L_n^+)$ is, of course, isomorphic to L_n and \mathbf{R}^n :

$$L_n \cong T_p (L_n^+) \ni \begin{pmatrix} \lambda_1 & (\lambda_3, \dots, \lambda_n) \\ (\lambda_3, \dots, \lambda_n) & \lambda_2 \end{pmatrix} = (\lambda_1, \dots, \lambda_n) \in \mathbf{R}^n,$$

Let Π be the two-dimensional section of $T_p(L_n^+)$ determined by the two vectors $\lambda = (\lambda_1, \dots, \lambda_n)$ and $\mu = (\mu_1, \dots, \mu_n)$ of $T_p(L_n^+)$, and let

$$\mathrm{K}\left(\Pi\right) = \frac{-\mathrm{R}_{ijkl}\,\lambda_{i}\,\lambda_{k}\,\mu_{j}\,\mu_{l}}{(g_{ik}\,g_{jl}-g_{il}\,g_{jk})\,\mu_{i}\,\mu_{k}\,\lambda_{j}\,\lambda_{l}}$$

be the sectional curvature of Π (see [1]). It turns out that the only components of the Riemann tensor R_{ijkl} , with $i, k \leq 2, j, l \leq 3$, which do not vanish at p are $R_{1313} = R_{2323} = s = -R_{1323} = -R_{2313}$, where s is a certain positive constant depending only on n. The invariance of the metric yields

(8)
$$K(II) = -s(I - |P_{II}(e)|^2)$$

where: e is a unit vector along the line $S = \{xI : x \in \mathbf{R}\} \subset L_n$; $P_{\Pi}(e)$ is the projection, with respect to the invariant Riemannian metric, of e on Π . In particular K (Π) = 0 if, and only if, Π contains S.

Formula (8) leads to the construction of the entire group of isometries for the Riemannian metric of the light-cone of \mathbb{R}^n , with $n \ge 3$. In fact, it can be proved that, if f is an isometry of L_n^+ keeping the points of S fixed, then there exist $a \in O(2)$ and $v, q \in O(n-2)$, such that $f = T_v g_a T_q$. Then (8) implies that, given any isometry g belonging to the isotropy subgroup of the point $p = \sqrt{\frac{n}{2}}$ I, either g or $\star g$ leaves S pointwise invariant. Hence:

THEOREM 1. The group of isometries of the light-cone L_n^+ $(n \ge 3)$ is the group

$$\operatorname{GL}(\operatorname{L}_n^+) \cdot \operatorname{K}$$
 (• direct product)

where K consists of the identity and the involution \star . Moreover the connected component of the identity, for the group of isometries, is GL (L_n^+) .

3. Extensibility.

Every linear isometry of L_n^+ can be extended to T (L_n^+) (see [5], [8]), and also the involution \star is extensible (see [9]). It can be directly proved, however, that the holomorphic automorphism of T (L_n^+)

$$\mathbf{H} \mapsto -\frac{n}{2} \mathbf{H}^{-1} \qquad (\mathbf{H} \in \mathbf{T} (\mathbf{L}_n^+))$$

is the extension of the involution (7). Hence:

THEOREM 2. All the isometries of the cone L_n^+ are extensible as holomorphic automorphisms to the associated tube domain.

4. \mathbf{R}^+_{\bigstar} and $\mathbf{R}^+_{\bigstar} \times \mathbf{R}^+_{\bigstar}$.

In conclusion we shall discuss briefly the case of light-cones in dimension one and two.

In the case of \mathbf{R}^+_{\bigstar} , the characteristic function, the metric tensor, and the involution are given by

$$\Phi_{\mathbf{R}^+_{\mathbf{\star}}}(x) = \frac{1}{x} \quad ; \quad g(x) = \frac{1}{x^2} \quad ; \quad \overset{\mathbf{\star}}{\mathbf{x}} = \frac{1}{x} \qquad (x \in \mathbf{R}^+_{\mathbf{\star}}) \,.$$

The differential equation for an isometry is

$$\frac{f'(x)}{f(x)} = \pm \frac{1}{x} \qquad (x \in \mathbf{R}^+_{\bigstar})$$

yielding

$$f(x) = \mathbf{H} \cdot x$$
, or $f(x) = \frac{\mathbf{K}}{x}$ (**H**, $\mathbf{K} \in \mathbf{R}^+_{\mathbf{X}}$).

Hence, the assertion of Theorem 1 (and Theorem 2) is valid also in this case.

The only light-cone in dimension two is the product $\mathbf{R}^+_{\bigstar} \times \mathbf{R}^+_{\bigstar}$, and this case turns out to be exceptional. The characteristic function, the metric tensor, and the involution are

$$\Phi_{\mathbf{R}^+_{\mathbf{X}} \times \mathbf{R}^+_{\mathbf{X}}}(x, y) = \frac{1}{xy}$$

$$(g_{ij}(x, y)) = \begin{pmatrix} \frac{1}{x^2} & 0\\ 0 & \frac{1}{y^2} \end{pmatrix}$$

$$(x, y) \in \mathbf{R}^+_{\mathbf{X}} \times \mathbf{R}^+_{\mathbf{X}}.$$

$$^{\star}(x, y) = \begin{pmatrix} \frac{1}{x}, \frac{1}{y} \end{pmatrix}.$$

4 --- RENDICONTI 1980, vol. LXVIII, fasc. 1.

Integration of the Killing equations (see [2])

$$\begin{cases} \frac{\partial \xi^{1}}{\partial x} - \frac{I}{x} \xi^{1} = 0\\ \frac{\partial \xi^{2}}{\partial y} - \frac{I}{y} \xi^{2} = 0\\ \frac{I}{x^{2}} \frac{\partial \xi^{1}}{\partial y} + \frac{I}{y^{2}} \frac{\partial \xi^{2}}{\partial x} = 0 \end{cases}$$

yields the splitting of the Lie algebra \mathscr{G} of the group of isometries, as a direct sum of the 2-dimensional vector space \mathscr{U} spanned by the vector fields

$$\alpha x \frac{\partial}{\partial x} + \beta y \frac{\partial}{\partial y} \qquad \qquad ((\alpha, \beta) \in \mathbf{R}^2)$$

and of the 1-dimensional vector space \mathscr{V} spanned by

$$(kx \cdot \log y) \frac{\partial}{\partial x} + (-ky \cdot \log x) \frac{\partial}{\partial y}$$
 $(k \in \mathbf{R}).$

Integration of the vector field of \mathscr{V}

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = kx \cdot \log y \\ \frac{\mathrm{d}y}{\mathrm{d}t} = -ky \cdot \log x \end{cases} \qquad (k \in \mathbf{R})$$

gives the one-parameter subgroup of isometries

$$\Phi(t): \mathbf{R}^+_{\bigstar} \times \mathbf{R}^+_{\bigstar} \to \mathbf{R}^+_{\bigstar} \times \mathbf{R}^+_{\bigstar} \qquad (t \in \mathbf{R})$$
$$(x, y) \mapsto (x^{\cos kt} \cdot y^{\sin kt}, y^{\cos kt} \cdot x^{-\sin kt}).$$

The orbit of a point q under the action of this subgroup is the (Riemannian) sphere with center (I,I) containing the point q. If $t = \pi/k$ we get

$$\Phi(\pi/k)((x, y)) = \left(\frac{1}{x}, \frac{1}{y}\right) = \star(x, y).$$

This shows easily that Theorem 1 is not valid in this case. Moreover the isometry $\Phi(t)$ is extensible to the tube domain if, and only if, $kt = \frac{\pi}{2}m$ $(m \in \mathbb{Z})$. Hence also the assertion of Theorem 2 cannot be generalized to this case.

Proof and further details will appear elsewhere.

50

References

- [1] W. M. BOOTHBY (1975) An introduction to differentiable manifolds and Riemannian geometry, New York, San Francisco, London, Academic Press.
- [2] L. P. EISENHART (1949) Riemannian geometry, Princeton University Press, 2nd edition.
- [3] S. HELGASON (1962) Differential geometry and symmetric spaces, New York, London, Academic Press.
- [4] C. HERTNECK (1962) Positivitätsbereiche und Jordan-strukturen, «Math. Annalen», Bd. 146, 433-455
- [5] W. KAUP, Y. MATSUSHIMA and T. OCHIAI (1970) On automorphisms and equivalences of generalized Siegel domains, «Am. J. Math.», XCII, 475.
- [6] M. KOECHER (1958) Analysis in reellen Jordan-Algebren, «Nachr. Akad. der Wissenschaften Göttingen » Nr. 4, 67-74.
- [7] M. KOECHER (1957) Positivitätsbereiche im Rⁿ, «Am. J. Math.», 79, 575-596.
- [8] S. MURAKAMI (1972) On automorphisms of Siegel domains, «Lecture Notes in Mathematics », 286, Springer-Verlag.
- [9] O. S. ROTHAUS (1960) Domains of positivity, «Ab. Mat. Sem. », 189-225.
- [10] E. B. VINBERG (1963) Theory of convex homogeneous cones, «Trans. Moscow Math. Soc. », 12, 340.