Atti Accademia Nazionale dei Lincei

Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Graziano Gentili

Differential Geometry of Light-Cones

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 68 (1980), n.1, p. 44-51.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1980_8_68_1_44_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Geometria. - Differential Geometry of Light-Cones. Nota di Graziano Gentili (*), presentata (*) dal Corrisp. E. Vesentini.

Rtassunto. - Si studia la geometria Riemanniana invariante dei coni-luce di $\mathbf{R}^{\boldsymbol{n}}$. Si determinano tutte le isometrie di un tale cono e si discute la loro estendibilità olomorfa al dominio tubolare associato al cono.

A cone in \mathbf{R}^{n} is called regular if it contains no affine line. Let $\mathrm{V} \subset \mathbf{R}^{n}$ be an open convex regular cone, and let V^{\prime} be the dual cone of V , i.e. the cone of linear forms x^{\prime} on \mathbf{R}^{n} such that $\left\langle x, x^{\prime}\right\rangle>0$ for all $x \in \overline{\mathrm{~V}}-\{0\} ; \mathrm{V}^{\prime}$ is also an open convex regular cone of \mathbf{R}^{n}. Henceforth, all cones will always be assumed to be open convex and regular.

The characteristic function (see [io]) of the cone V is the C^{∞} function (defined on V)

$$
\Phi_{\mathrm{V}}(x)=\int_{\mathrm{V}^{\prime}} \exp \left(-\left\langle x, x^{\prime}\right\rangle\right) \mathrm{d} x^{\prime} \quad(x \in \mathrm{~V})
$$

where $\mathrm{d} x^{\prime}$ is the Lebesgue measure on \mathbf{R}^{n}. The function $\log \Phi_{\mathrm{V}}$ is strictly convex, hence the quadratic differential form

$$
\sum_{i, j=1}^{n} \frac{\partial^{2} \log \Phi_{\mathrm{V}}}{\partial x_{i} \partial x_{j}}(x) \mathrm{d} x_{i} \mathrm{~d} x_{j}
$$

defines a (positive definite) Riemannian metric of class C^{∞} on V. Since every linear automorphism Ω of the cone V is such that

$$
\begin{equation*}
|\operatorname{det} \Omega| \cdot\left(\Phi_{\mathrm{V}}(\Omega x)\right)=\Phi_{\mathrm{V}}(x) \quad(x \in \mathrm{~V}) \tag{I}
\end{equation*}
$$

then the above defined Riemannian metric is invariant under the action of the group GL (V) of all affine (hence linear, see [10]) automorphisms of V. In the following work, we will consider only this invariant Riemannian metric of V.

The linear form - $\mathrm{d}\left(\log \Phi_{\mathrm{V}}\right)_{x}$ is a point in V^{\prime}, which will be denoted by ${ }^{\star} x$. The function $x \mapsto{ }^{\star} x$ defines a C^{∞} diffeomorphism of V onto V^{\prime}. Moreover, if V is affine-homogeneous (i.e., GL (V) acts transitively on V), then ${ }^{\star}\left({ }^{\star} x\right)=x$ for all $x \in \mathrm{~V}$, and also the diffeomorphism $x \mapsto \star_{x}$ is an isometry of V onto V^{\prime} (with respect to the invariant metrics of V and V^{\prime}). References for these facts are [7], [9], [Io].

[^0]The following problems arise naturally.
The first concerns the determination of the whole group of isometries for the invariant Riemannian metric of a cone.

Let $\mathrm{T}(\mathrm{V})=\left\{x+i y: x \in \mathbf{R}^{n}, y \in \mathrm{~V}\right\} \subset \mathbf{C}^{n}$ be the tube domain associated to the cone V ; the cone V will be identified with the subset $i \mathrm{~V}=\{i y: y \in \mathrm{~V}\}$ of $T(V)$. The second question deals with the extensibility of the isometries (for the Riemannian metric of V) to holomorphic automorphisms of the tube domain $T(V)$. In other words the question is: which isometries of V can be obtained as restriction to $i \mathrm{~V}$ of biholomophic automorphisms of $\mathrm{T}(\mathrm{V})$ leaving $i \mathrm{~V}$ invariant?

This article will report some results obtained for the class of light-cones. This is an ample class of affine-homogeneous cones in \mathbf{R}^{n}, which are selfadjoint, in the sense that the canonical inner product defining the Euclidean distance in \mathbf{R}^{n} identifies these cones with their duals. In dimension $n \geq 2$, the light-cone of \mathbf{R}^{n} consists of all $\left(x_{1}, \cdots, x_{n}\right) \in \mathbf{R}^{n}$ such that $x_{1}^{2} \cdots \cdots x_{n}^{2}>0$ and $x_{1}>0$. We shall consider \mathbf{R}_{\star}^{+}(the set of strictly positive real numbers) as the one-dimensional light-cone.

In n. I the light-cones of dimension $n \geq 3$ will be realized as cones of "matrices" L_{n}^{+}. In terms of this realization we will compute the characteristic function, the Riemannian distance, the mapping \star, and we will describe the geodesic curves. Section 2 deals with the construction of the entire group of isometries for the light-cones of dimension $n \geq 3$. Section 3 solves the extensibility problem. Finally section 4 deals with the one-and two-dimensional light-cones for which a different approach has to be divised.

Proofs and further details will appear elsewhere.

1. The light-cone $\mathrm{L}_{n}^{+}(n \geq 3)$ and its invariant Riemannian metric.

Let $L_{n}(n \geq 3)$ be the set whose elements are the matrices $\left(\begin{array}{ll}x & \boldsymbol{z} \\ \boldsymbol{z} & y\end{array}\right)$ with $x, y \in \mathbf{R}$ and $\boldsymbol{z} \in \mathbf{R}^{n-2}$. This set, with addition and multiplication defined in the obvious way, is a real vector space of dimension $n \geq 3$. Let $h=\left(\begin{array}{ll}x & \boldsymbol{z} \\ \boldsymbol{z} & y\end{array}\right)$ and $k=\left(\begin{array}{ll}t & \boldsymbol{w} \\ \boldsymbol{w} & u\end{array}\right)$ be elements of L_{n}, and let us define

$$
\begin{aligned}
& h \cdot k=\left(\begin{array}{ll}
x t+\boldsymbol{z} \cdot \boldsymbol{w} & x \boldsymbol{w}+u \boldsymbol{z} \\
t \boldsymbol{z}+y \boldsymbol{w} & u y+\boldsymbol{z} \cdot \boldsymbol{w}
\end{array}\right) \\
& h \circ k=\frac{1}{2}(h \cdot k+k \cdot h) \in \mathrm{L}_{n} .
\end{aligned}
$$

$\left(L_{n}, \circ\right)$ is a (non associative) commutative algebra with identity $\mathrm{I}=\left(\begin{array}{ll}1 & \mathbf{0} \\ \mathbf{0} & 1\end{array}\right)$; in particular it turns out to be a Jordan algebra (see [4], [6]).

The bilinear map
(2)

$$
(,): \mathrm{L}_{n} \times \mathrm{L}_{n} \rightarrow \mathbf{R}
$$

$$
(h, k) \mapsto \operatorname{tr}(h \cdot k)=x t+u y+2 \boldsymbol{z} \cdot \boldsymbol{w}
$$

turns out to be a scalar product and, if \|\| \| denotes the norm it induces on L_{n}, the following relations hold, for a suitable $r \in \mathbf{R}_{\star}^{+}$(see [6])

$$
\|h \circ k\| \leq r\|h\| \cdot\|k\|
$$

(3)

$$
\left\|h^{m}\right\| \leq r^{m}\|h\|^{m} \quad \forall h, k \in \mathrm{~L}_{n}, \quad \forall m \in \mathbf{N}
$$

Formulas (3) allow us to define both the C^{∞} function \exp, from ($L_{n}, 0$) in itself, $h \stackrel{\exp }{\mapsto} \sum_{m=0}^{\infty} \frac{h^{m}}{m!}$, and its inverse function log, defined on $\exp \left(\mathbf{L}_{n}\right)$.

If $q \in \mathrm{O}(n-2)$ is an orthogonal matrix, then the linear map

$$
\mathrm{T}_{q}: \mathrm{L}_{n} \rightarrow \mathrm{~L}_{n}
$$

(4)

$$
\left(\begin{array}{ll}
x & z \\
z & y
\end{array}\right) \mapsto\left(\begin{array}{cc}
x & q \cdot z \\
q \cdot z & y
\end{array}\right)
$$

is an algebra-automorphism of ($\mathrm{L}_{n}, 0$).
If $a \in \operatorname{GL}(2, \mathbf{R}), \boldsymbol{z}=\left(z_{3}, \cdots, z_{n}\right) \in \mathbf{R}^{n-2}, \boldsymbol{w}=\left(w_{3}, \cdots, w_{n}\right) \in \mathbf{R}^{n-2}$, let us define

$$
g_{a}: \mathrm{L}_{n} \rightarrow \mathrm{~L}_{n}
$$

$$
\left(\begin{array}{ll}
x & \boldsymbol{z} \tag{5}\\
\boldsymbol{z} & y
\end{array}\right) \mapsto\left(\begin{array}{cc}
t & \boldsymbol{w} \\
\boldsymbol{w} & u
\end{array}\right)
$$

where $\quad\left(\begin{array}{cc}t & w_{3} \\ w_{3} & u\end{array}\right)=a\left(\begin{array}{cc}x & z_{3} \\ z_{3} & y\end{array}\right) t_{a} ; \quad w_{4}=z_{4}(\operatorname{det} a) ; \ldots \quad w_{n}=z_{n}(\operatorname{det} a)$; the linear map g_{a} is an automorphism of the vector space L_{n}.

If $l_{n} \subset \mathrm{~L}_{n}$ is the set of matrices $\left(\begin{array}{ll}x & \boldsymbol{z} \\ \boldsymbol{z} & y\end{array}\right)$ such that \boldsymbol{z} has the last $n-3$ components equal to zero, then for all $h \in \mathrm{~L}_{n}$, there exists $q \in \mathrm{O}(n-2)$ such that $\mathrm{T}_{q}(h) \in l_{n}$. In particular $\mathrm{T}_{q}(\exp (h))=\exp \left(\mathrm{T}_{q}(h)\right)$ and, if $\mathrm{T}_{q}(h) \in l_{n}$, $g_{a} \cdot \mathrm{~T}_{q}(\exp (h))=\exp \left(g_{a} \cdot \mathrm{~T}_{q}(h)\right)(a \in \mathrm{O}(2))$. Analogous identities hold for the logarithm.

The "determinant " of the matrix $h=\left(\begin{array}{ll}x & \boldsymbol{z} \\ \boldsymbol{z} & y\end{array}\right)$ will be the real number
$x y-|z|^{2}$, denoted by $\operatorname{det}(h)$. Every $h=\left(\begin{array}{ll}x & z \\ z & y\end{array}\right) \in\left(\mathrm{L}_{n}, 0\right)$ such that $\operatorname{det}(h) \neq 0$ and that $x y>0$, has a unique inverse element $h^{-1} \in\left(\mathrm{~L}_{n}, 0\right)$, expressed by

$$
h^{-1}=\frac{1}{x y-|z|^{2}} \cdot\left(\begin{array}{lr}
y & -z \tag{6}\\
-z & x
\end{array}\right)
$$

If we set, for $n \geq 3$,

$$
\mathrm{L}_{n}^{+}=\left\{h=\left(\begin{array}{ll}
x & \boldsymbol{z} \\
\boldsymbol{z} & y
\end{array}\right) \in \mathrm{L}_{n}: \operatorname{det}(h)>0, \quad x>0\right\}
$$

then L_{n}^{+}is a self adjoint (with respect to the scalar product defined in (2)) affine-homogeneous irreducible (see [9]) cone, isomorphic to the n-dimensional light-cone.

For all $q \in \mathrm{O}(n-2)$ and for all $a \in \mathrm{GL}(2, \mathbf{R})$ the functions T_{q} and g_{a} defined in (4), (5) are elements of GL (L_{n}^{+}); besides that, for every $h \in \mathrm{~L}_{n}^{+}$, there exist $q \in \mathrm{O}(n-2)$ and $a \in \mathrm{GL}(2, \mathbf{R})$ such that $g_{a} \mathrm{~T}_{q}(h)=\mathrm{I}$. Now, using essentially property (1), we obtain for the characteristic function of the cone L_{n}^{+}(up to a positive constant factor)

$$
\Phi_{\mathrm{L}_{n}^{+}}(h)=(\operatorname{det}(h))^{-(n / 2)} \quad\left(h \in \mathrm{~L}_{n}^{+}\right)
$$

The differential of $\log \Phi_{\mathrm{L}_{n}^{+}}$at the point $h \in \mathrm{~L}_{n}^{+}$is represented by the vector $--\frac{n}{2} h^{-1}($ see (2), (6)), hence

$$
\begin{equation*}
\star_{h}=\frac{n}{2} h^{-1} \quad\left(h \in \mathrm{~L}_{n}^{+}\right) \tag{7}
\end{equation*}
$$

The unique fixed point of the involution \star is $\sqrt{\frac{n}{2}} I$.
The problem of finding a geodesic curve joining any two points of a cone (see [9]) can be solved directly in this case, restricting the system of differential equations for geodesics to the subset D of diagonal matrices and integrating it. We obtain that, given any two points of L_{n}^{+}, there exists one and only one geodesic arc joining the two points (up to parametrization) (see [3]). Moreover this unique geodesic is a planar curve. The geodesic l joining I and the point $\mathrm{X} \in \mathrm{L}_{n}^{+}$is given by

$$
l(s)=\exp (s \cdot \log \mathrm{X}) \quad-\infty<s<\infty
$$

Integration of the " length element". along a geodesic arc lying in $\mathrm{D} \cap \mathrm{L}_{n}^{+}$, proves that the Riemannian distance from $\mathrm{I}, \mathrm{d}(\mathrm{I}, \cdot)$, is

$$
\mathrm{d}(\mathrm{I}, \mathrm{X})=\sqrt{\frac{n}{2}}\|\log \mathrm{X}\| \quad\left(\mathrm{X} \in \mathrm{~L}_{n}^{+}\right)
$$

2. The group of isometries.

In the case of light-cones of dimension $n \geq 3$, we determine the whole group of isometries. This is made possible by the explicit computation of the sectional curvature at a point of the cone.
$\mathrm{T}_{p}\left(\mathrm{~L}_{n}^{+}\right)$denotes the tangent space of L_{n}^{+}at the point $p=\sqrt{\frac{n}{2}} \mathrm{I}$. $\mathrm{T}_{p}\left(\mathrm{~L}_{n}^{+}\right)$is, of course, isomorphic to L_{n} and \mathbf{R}^{n} :

$$
\mathrm{L}_{n} \cong \mathrm{~T}_{p}\left(\mathrm{~L}_{n}^{+}\right) \ni\left(\begin{array}{cc}
\lambda_{1} & \left(\lambda_{3}, \cdots, \lambda_{n}\right) \\
\left(\lambda_{3}, \cdots, \lambda_{n}\right) & \lambda_{2}
\end{array}\right)=\left(\lambda_{1}, \cdots, \lambda_{n}\right) \in \mathbf{R}^{n},
$$

Let Π be the two-dimensional section of $\mathrm{T}_{p}\left(\mathrm{~L}_{n}^{+}\right)$determined by the two vectors $\lambda=\left(\lambda_{1}, \cdots, \lambda_{n}\right)$ and $\mu=\left(\mu_{1}, \cdots, \mu_{n}\right)$ of $T_{p}\left(L_{n}^{+}\right)$, and let

$$
\mathrm{K}(\Pi)=\frac{-\mathrm{R}_{i j k l} \lambda_{i} \lambda_{k} \mu_{j} \mu_{l}}{\left(g_{i k} g_{j l}-g_{i l} g_{j k}\right) \mu_{i} \mu_{k} \lambda_{j} \lambda_{l}}
$$

be the sectional curvature of Π (see [1]). It turns out that the only components of the Riemann tensor $\mathrm{R}_{i j k l}$, with $i, k \leq 2, j, l \leq 3$, which do not vanish at p are $\mathrm{R}_{1313}=\mathrm{R}_{2323}=s=-\mathrm{R}_{1323}=-\mathrm{R}_{2313}$, where s is a certain positive constant depending only on n. The invariance of the metric yields

$$
\begin{equation*}
\mathrm{K}(\mathrm{II})=-s\left(\mathrm{I}-\left|\mathrm{P}_{\Pi}(\boldsymbol{e})\right|^{2}\right) \tag{8}
\end{equation*}
$$

where: \boldsymbol{e} is a unit vector along the line $\mathrm{S}=\{x \mathbf{I}: x \in \mathbf{R}\} \subset \mathrm{L}_{n} ; \mathrm{P}_{\Pi}(\boldsymbol{e})$ is the projection, with respect to the invariant Riemannian metric, of \boldsymbol{e} on Π. In particular $K(\Pi)=0$ if, and only if, Π contains S.

Formula (8) leads to the construction of the entire group of isometries for the Riemannian metric of the light-cone of \mathbf{R}^{n}, with $n \geq 3$. In fact, it can be proved that, if f is an isometry of L_{n}^{+}keeping the points of S fixed, then there exist $a \in \mathrm{O}$ (2) and $v, q \in \mathrm{O}(n-2)$, such that $f=\mathrm{T}_{v} g_{a} \mathrm{~T}_{q}$. Then (8) implies that, given any isometry g belonging to the isotropy subgroup of the point $p=\sqrt{\frac{n}{2}} \mathrm{I}$, either g or ${ }^{\star} g$ leaves S pointwise invariant. Hence:

Theorem i. The group of isometries of the light-cone $\mathrm{L}_{n}^{+}(n \geq 3)$ is the group

$$
\mathrm{GL}\left(\mathrm{~L}_{n}^{+}\right) \cdot \mathrm{K} \quad(\cdot \text { direct product })
$$

where K consists of the identity and the involution \star. Moreover the connected component of the identity, for the group of isometries, is GL (L_{n}^{+}).

3. Extensibility.

Every linear isometry of L_{n}^{+}can be extended to $\mathrm{T}\left(\mathrm{L}_{n}^{+}\right)$(see [5], [8]), and also the involution \star is extensible (see [9]). It can be directly proved, however, that the holomorphic automorphism of $\mathrm{T}\left(\mathrm{L}_{n}^{+}\right)$

$$
\mathrm{H} \mapsto-\frac{n}{2} \mathrm{H}^{-1}
$$

$$
\left(\mathrm{H} \in \mathrm{~T}\left(\mathrm{~L}_{n}^{+}\right)\right)
$$

is the extension of the involution (7). Hence:
Theorem 2. All the isometries of the cone L_{n}^{+}are extensible as holomorphic automorphisms to the associated tube domain.

4. \mathbf{R}_{\star}^{+}and $\mathbf{R}_{\star}^{+} \times \mathrm{R}_{\star}^{+}$.

In conclusion we shall discuss briefly the case of light-cones in dimension one and two.

In the case of \mathbf{R}_{\star}^{+}, the characteristic function, the metric tensor, and the involution are given by

$$
\Phi_{\mathbf{R}_{\star}^{+}}(x)=\frac{\mathrm{I}}{x} \quad ; \quad g(x)=\frac{\mathrm{I}}{x^{2}} \quad ; \quad \star_{x}=\frac{\mathrm{I}}{x} \quad\left(x \in \mathbf{R}_{\star}^{+}\right)
$$

The differential equation for an isometry is

$$
\begin{equation*}
\frac{f^{\prime}(x)}{f(x)}= \pm \frac{\mathrm{I}}{x} \tag{+}
\end{equation*}
$$

yielding

$$
f(x)=\mathrm{H} \cdot x, \quad \text { or } \quad f(x)=\frac{\mathrm{K}}{x} \quad\left(\mathrm{H}, \mathrm{~K} \in \mathbf{R}_{\star}^{+}\right)
$$

Hence, the assertion of Theorem I (and Theorem 2) is valid also in this case.
The only light-cone in dimension two is the product $\mathbf{R}_{\star}^{+} \times \mathbf{R}_{\star}^{+}$, and this case turns out to be exceptional. The characteristic function, the metric tensor, and the involution are

$$
\begin{aligned}
\Phi_{\mathbf{R}_{\star}^{+} \times \mathbf{R}_{\star}^{+}}(x, y) & =\frac{\mathrm{I}}{x y} \\
\left(g_{i j}(x, y)\right) & =\left(\begin{array}{cc}
\frac{1}{x^{2}} & 0 \\
0 & \frac{\mathrm{I}}{y^{2}}
\end{array}\right) \quad(x, y) \in \mathbf{R}_{\star}^{+} \times \mathbf{R}_{\star}^{+} \\
\star(x, y) & =\left(\frac{\mathrm{I}}{x}, \frac{\mathrm{I}}{y}\right) .
\end{aligned}
$$

4 - RENDICONTI 1980, vol. LXVIII, fasc. 1.

Integration of the Killing equations (see [2])

$$
\left\{\begin{array}{l}
\frac{\partial \xi^{1}}{\partial x}-\frac{1}{x} \xi^{1}=0 \\
\frac{\partial \xi^{2}}{\partial y}-\frac{1}{y} \xi^{2}=0 \\
\frac{1}{x^{2}} \frac{\partial \xi^{1}}{\partial y}+\frac{1}{y^{2}} \frac{\partial \xi^{2}}{\partial x}=0
\end{array}\right.
$$

yields the splitting of the Lie algebra \mathscr{G} of the group of isometries, as a direct sum of the 2 -dimensional vector space \mathscr{U} spanned by the vector fields

$$
\alpha x \frac{\partial}{\partial x}+\beta y \frac{\partial}{\partial y} \quad\left((\alpha, \beta) \in \mathbf{R}^{2}\right)
$$

and of the I-dimensional vector space \mathscr{V} spanned by

$$
(k x \cdot \log y) \frac{\partial}{\partial x}+(-k y \cdot \log x) \frac{\partial}{\partial y} \quad(k \in \mathbf{R}) .
$$

Integration of the vector field of \mathscr{V}

$$
\left\{\begin{array}{l}
\frac{\mathrm{d} x}{\mathrm{~d} t}=k x \cdot \log y \\
\frac{\mathrm{~d} y}{\mathrm{~d} t}=-k y \cdot \log x
\end{array}\right.
$$

gives the one-parameter subgroup of isometries

$$
\begin{gathered}
\Phi(t): \mathbf{R}_{\star}^{+} \times \mathbf{R}_{\star}^{+} \rightarrow \mathbf{R}_{\star}^{+} \times \mathbf{R}_{\star}^{+} \\
(x, y) \mapsto\left(x^{\cos k t} \cdot y^{\sin k t}, y^{\cos k t} \cdot x^{-\sin k t}\right) .
\end{gathered}
$$

The orbit of a point q under the action of this subgroup is the (Riemannian) sphere with center (I, I) containing the point q. If $t=\pi / k$ we get

$$
\Phi(\pi / k)((x, y))=\left(\frac{\mathrm{I}}{x}, \frac{\mathrm{I}}{y}\right)=\star(x, y) .
$$

This shows easily that Theorem I is not valid in this case. Moreover the isometry $\Phi(t)$ is extensible to the tube domain if, and only if, $k t=\frac{\pi}{2} m$ ($m \in \mathbf{Z}$). Hence also the assertion of Theorem 2 cannot be generalized to this case.

Proof and further details will appear elsewhere.

References

[1] W. M. Boothby (1975) - An introduction to differentiable manifolds and Riemannian geometry, New York, San Francisco, London, Academic Press.
[2] L. P. Eisenhart (1949) - Riemannian geometry, Princeton University Press, 2nd edition.
[3] S. Helgason (1962) - Differential geometry and symmetric spaces, New York, London, Academic Press.
[4] C. Hertneck (1962) - Positivitätsbereiche und Jordan-strukturen, "Math. Annalen», Bd. 146, 433-455
[5] W. Kaup, Y. Matsushima and T. Ochiai (1970) - On automorphisms and equivalences of generalized Siegel domains, "Am. J. Math.", XCII, 475.
[6] M. Koecher (1958) - Analysis in reellen Jordan-Algebren, "Nachr. Akad. der Wissenschaften Göttingen» Nr. 4, 67-74.
[7] M. Koecher (1957) - Positivitütsbereiche im \mathbf{R}^{n}, "Am. J. Math.», 79, 575-596.
[8] S. Murakami (1972) - On automorphisms of Siegel domains, «Lecture Notes in Mathematics», 286, Springer-Verlag.
[9] O. S. Rothaus (1960) - Domains of positivity, «Ab. Mat. Sem.», 189-225.
[10] E. B. Vinberg (1963) - Theory of convex homogeneous cones, "Trans. Moscow Math. Soc. 1, I2, 340.

[^0]: (*) Scuola Normale Superiore. Piazza dei Cavalieri, 7, 56ıoo Pisa.
 ${ }^{(* *)}$ Nella seduta del 12 gennaio 1980.

