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Fisica matematica. — On the contribution of heat flux to the pro-
pagation velocity of relativistic shock waves in thermo-elastic bodies ©.
Nota II di ALpo Bressan, presentata ™ dal Corrisp. G. GRrioLr.

RIASSUNTO. — Si studiano onde d’urto termomeccaniche, (precisamente T—w-onde
d’urto) in corpi elastici (o fluidi non viscosi) in una teoria di relativita ristretta o generale,
includente il tensore termodinamico di C. Eckart (cfr. [2]). La velocita di propagazione V
di queste & calcolata in vari casi, almeno a meno di termini d’ordine 2 (rispetto a 1/c ove
¢ & la velocita della luce nel vuoto). A questo scopo ¢ essenziale usare, per esempio, un certo
postulato di carattere generale, il quale & compatibile con un’ipotesi di solito fatta implici-
tamente. Nel caso piu generale V dipende da certi rapporti fra parametri di discontinuita
e loro derivate. Questi rapporti spariscono in casi speciali importanti concernenti i solidi, e
in ogni caso riguardante i fluidi. In particolare & posta in evidenza la dipendenza di V dal
flusso di calore.

6. THERMO-MECHANIC SHOCK WAVES IN NON-VISCOUS FLUIDS

We now consider a non-viscous fluid ¥. Hence for it

(6) gw:ZU(k)n) ’ qp:'%'('r/P_I_TAP) ) %:”(é”l]),
I
[ xo = b | p=pm =i, , T—u.

By (6.1), (5.13) holds. Then by (6.1)15» (whence 4 [w] = p[£]+ £ T [])

(6.2) {pﬂ(r—%)%v—-(wr%_ -c-;%)vz} [4] +

’ T —
+ (pn — V?) [1] =&

where IE‘ =0 for ¢"IN? (3.6) and (5.11), being understood.

PosT 6.1. Across a T-n-shock wave travelling in a viscous fluid

6.3) [n] = es,6 [£]

where ps.6 is @ constitutive function of kv ,q", N®, and possibly also of the
way in which the shock wave is produced.

(*) This work has been prepared within the sphere of activity of Research group n. 3
in the C.N.R. (Consiglio Nazionale delle Ricerche) in the academic year 1978-79.
(**) Nella seduta del 14 giugno 1979.
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The (only) important thing is that we are able to know ps,¢ before the
wave occurs. Experiments say that (6.3) holds satisfactorily for Ps,¢ VEry
small or even vanishing,

We can replace [v] by ps,6[#4] in (6.2). The requirement that the
coefficient of [£] in the resulting equation should vanish constitutes an
equation in V of the third degree (for l 6 l negligible):

, 2\ 2 g0 AT _
S R A
where |6 =0  for §*IN".

The classical determination V of V is glven by (6.4) for 1/c = o (hence
7% = 0 = |6 ]); furthermore

gV=v—{—i—3 ('w—f-p‘l"PssféT) +D
(,‘ 6

6.5)

2 with V=Y p,+ ps.6 2} (>0)

where w = O when the reference state coincides with the actual one.

Indeed, for £ =c¢2 let f(V, E) be the left hand side of (6.4). Then

2cg

%W,0)=~2‘7’ : (VO) V— (w+%+95,eﬂ)\72;

hence (6.5); holds in that (6.4) defines a function V =V (§) for which
V(o) =V (cf. (6.5),) and dV/d§ = — (3f/38)/(af/aV).

Remark that (6.5), affords the first order relativistic corrections to the
classical propagation speed V of a T-n-shock wave o, travelling in a non-
viscous fluid under a heat flux, within Eckart's theory. The new parts of this
correction are the term in the (ordinary size) heat flux ¢g3 (= ¢¢*N,) and
the contribution due to the coefficient ps,¢ which vanishes in case the shock
is isentropic. The correction to V due to the heat flux ¢¢® is the contri-
bution of ¢g® to V; and wup to terms in ¢, it is the speed 1E1gP with
whick the energy ki AC (associated with the local mass kdC) ought to travel
along Ny, 2o give vise to a flux that equals cg®. Thus the shock wave is
algebraically accelerated by the heat flux; hence it travels faster towards regions
with lower temperatures.

Of course for 4" || N* equation (6.4) holds with |6 | = o. Hence 4 affords
three exact values for N in this case—see remark below (5.13).
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Also in the general case better solutions than (6.5) can be found.
Indeed, by (6.4) and (6.5),

R [a

ik
6.6) ¢
v q°
b= (‘ - ?) 3
where ¢3 = ¢° N,; hence

6.7) + 6.

v_ BEVF TP
&

7. BASIC RELATIVISTIC THERMO-MECHANIC EQUATIONS
FOR SHOCK WAVES IN ELASTIC SOLIDS

Now we consider a thermo-elastic body % of constitutive equations

(7.1)  w=w(,n,Cm)=w(,n,d) , T=T(,n,d=uw,
(72) DX =K"« , Ki= 4 g:’; kD = B
L

73 F=A" T+ TA) , H°=A(y,1,08) =# (Hpu’=0).

; By (7.1)s )
(7.4)  [T1=Ti[l+ T [§], e A,=T,As+ T B AT,

where ‘A, = [T] and As = [1] refer to both 6, and o;.

Since [¢¢°], which has an ordinary size, substantially occurs in (5.8)
also multiplied by V¢-2 and we aim at calculating V up to terms in ¢,
we can neglect the contributions to [¢g"] of order two in 1/c:

(7.5) [7'] = (" [n] + (@) [02] + (¢, [Ti] + [31.
By equation (176.2), in [6], which holds also in general relativity,

g [T)] = BN, + 2% Ase ; N =N,
(7.6 ?

hence xs° =o , B,=I[Ts].
Then, by (7.3), (7.5) with » = 3 becomes
7.7) [¢°] = #%° By + ™ 2,7 Ay + [#%1 T + | 3
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so that (for » =1, 2 and trivially for » = 3)

b

(7.8) 3] [ = #"° Byt #7 27 Ay + [#7] T =
73

H s
= (1 — DA Ty — A" 277 Aur) +

[Ty + A 2 Agyer

By (5.11) this yields

(7.9) 3 +I1=

f;?,g ( k [w ]4 X [us] — [#7] T/l) +

71 s #" H ;
+ [’% l] T/l + (f%pr - ) %3 ) xs'MAzl;&f .
Then (5.8); becomes

10) DX 2 g5 [0+ (3] = (o b1+ Xl + Sy (#E1
— X* [u,] — [#™] T/z) + [#"1 Ty + (%” —% ff) Aw} ;

By (5'I>) <5'2>1y (7’1)1“‘37 and <7-2>1

7 V. 8 I I r V.
(7.0 [XT] 4 XPE BN, = 5 [R5 K By A (_Vt=%)
Furthermore by (3.4)s, (7.2)1, and (3.4n
(7.12) Vexn_ & xnN, = LR N, £ = LKt

N &x 9 ‘o D »

hence (by (5.11), B N, = BJ)
(7.13) [X") = 5 [K™]ed.
By (7.1) and (7.2)s,3
S k[w] = —% KBS 4 — AT A,

(7.14)
( [K,"] = — £ (coif e BS A+ i As)
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By (7.13-14) we can turn (7.10) into
(7.15) Brs Bx - 67 Bs + Brwr Aww = [ 4]
where (4* = £92)

ZV* V&V

(3 81')3 - <9873 + er) %_ =+

p —éZU’JOLL./V‘M+

ne Ay : N
=+ [(‘%lai_ 3 o ‘L:I T/l'/V;-ef_

(7.16) -
’ rs Jf 3s V
Brar = (f s H ) Xsl !

’y i . A% 3 V
Bi = ,éZ(Uo‘rﬂrl oci + l:(e% t y — %33 (M Tl] T, — — pE £l — .

To prove this is straightforward when one remarks that the contribution
of (H#"|A#*) k[w] V22 to B,, is the left hand side of

V2 VV.
(7.17) o KAt =X,

multiplied by — #73/#® and that (7.17) holds by (7.12), so that by (5.1),
this contribution eliminates the one of (#"°[#) (— X [w,]) V/e.

Of course by (3.4-5) V and N,, or Vyx and AT can be eliminated from
the coefficients (7.16). Furthermore we can obtain covarlant expressions
for these coefficients by replacing in (7.16) e.g. #™ with #™ Ng and #*
with #** N, Ng.

8. PROPAGATION VELOCITY OF RELATIVISTIC SHOCK WAVES
IN ELASTIC SOLIDS. DISCUSSION

By (7.1)s4 there is a relation among A, A;, and B%, namely

(8.1) A, =Ty, A; + TO;z ALB,  (Ar= A7, A; = AD)

which can be solved with respect to A;.

Let us say that the (thermo-mechanic) shock wave o, is of the zype
B, BT, B;M) ({=4,-,6) at dts point Q if there we have, under condi-
tion (3.6)

(8.2) Bis Bix+ B As + Bw A/ =0 ((=4,5,6).
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Then its propagation speed must solve, up to [E‘, the polynomial equation
(8.3) det || @, || = © (,m=1,+-,6),
generally of the 6-th degree, in Vi or V, where (cf. (7.13))

(84> alr:ﬁlr ’ al3+v‘g=ﬂllﬂ 3 dw:B? (Z:I,"°,6;J{=I,2).

Now remember that discontinuity waves are regarded here, as well in [3]
and [4], as small perturbations. Furthermore, in harmony with what is
done in [4] (or [3]), remark that by the way in which the usual theory
of shock (or acceleration) waves travelling in purely mechanic bodies is
applied to real thermo-elastic bodies, a postulate such as [n] =0 or [y,] =0
across these waves in quite acceptable, at least for ¢** or ¢” small. In order
to have a finer and more general theory, this postulate can be replaced by a
constitutive law such as relation (6.3) for fluids:

Post. 8.1. On T-n-shock waves
(8.5) BoBE+ B A+ Bw A =0 (B2 =0)

where B, B°, and (3;1 are functions of ¥ ,%,05.,9", N f, and possibly the way
in which 6, is produced.

The acceptable first order approximation substantially referred to above
on considering ¢"* small, is afforded by (8.5) for g =1,B,=o0, and By =0 —
which incidentally renders (8.5) a universal relation. In any case (8.5)
cannot differ much from the latter relation, so that we can always assume
B® %0 and hence §° = —1.

The speeds V and Vi can be calculated by (8.3) again, by identi-
fying (8.5) with (8.2) for /= 6. Of course by Post. 8.1 with 8 = —1 we
can regard the (Jocal) type of o, as determined by (B, Bit) ({ = 4,5;
&/ = 1,2) in that we can assume (8.2) to hold with

(8.6) Bi=p =0 , B=p=—1.

9. SPECIAL CASES. EXPLICIT EXPRESSION OF Vi IN THEM
We consider the case where, at least locally,
(91> AS;M =0

holds. In special relativity it occurs in particular for (spatially) homogeneous
plane (shock) waves and for waves having a spherical symmetry. It is
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worth while remarking that surely of the first [second] kind are the shock
waves produced in problems (including initial and boundary conditions) in
which the data are independent of the first two spatial co-ordinates x1 and x2
in a given Minkowskian frame (x9 ... 2% [the data are independent of the
angular co-ordinates ¢ and & in the spherical co-ordinate system (2% ¢ , 9, #)
associated with (29 --., x%)].

By (9.1) and (8.6);,4 we can replace (8.2) with the only relation
(9.2) A, =B,Bf (or A; =B:Bf with B,«° =0)

where, as in the sequel,  (3.6) is assumed. Then, by (7.16) equations (7.15)
become

©3) b By =41,

where (cf. (3.4)2-4 and (3.5))

(9.4) bys = byso by Ve + by Vi
with

broo = & (W o ) ok N+ & (i ) oL B°

’ %3 ’ ’
érsl = T/l {[('%pﬂ%ci'— 38 (fsl a;.] ‘/Vi + [(ﬂl T

9.5) # 2
- %;3 ('%rl 'n] Bs} {‘ + 7g(3 87)3 »

Hy Y
— by = 931'3 + er + B Yk TB, 2

Of course (9.3) has a proper solution B iff
©6) , det || 8[| = [ 4] .

In other words (9.3) 4olds for some spatial unit vector B, (depending on 1/c)
and some determination of | 4 I iff det|| b,,|| is (a function of) 1]c, infinitesimal
of the 4™ order.

It is interesting to identify the reference configuration with the actual

one and to assume, besides (3.6) and Ny = — 1, the identies 3" = 8} .
Then

g =293 , 9=1=v , X;=K;,
©.7)
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so that relations (9.5) simplify into

brsozféw"+k nBs:

%3
_ i NG N
561’31 - T/l {(,7/ oy %) (ﬂ )oc3 + [(‘% )71

(059
ﬁ (”ﬂ YII] Bs} _|' 2 Q(3 81-)3 )

3

H,
—c bm = Psrs + er + kT ps

If € cannot conduct heat (#" = 0), all terms in #" (, #%/# ) and ¢°
vanish, as can be seen partly directly on the basis of (9.5") and partly by
remembering that the terms in J#3/# arise from the expression (7.9) for
[9'1(=0). We conclude that the propagation speed NV of the shock waves
travelling in a thermo-elastic body € uncapable of conducting heat are the
solutions of the secular equation

" ‘ Ve |
(9.8) detlwy,s AL A — (03 + Xp) 5|l =0 (V=8 +°) .

As is known, these solutions are also the possible propagation speeds
of relativistic acceleration waves in € @,
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