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Fisica matematica. — Quasi-linear systems and waves in thermo-
viscous fluiddynamics ©. Nota di ANGELo Morro, presentata @ dal
Socio D. GrAFFI.

RIASSUNTO. -— Si considera un fluido viscoso e conduttore di calore il cui compor-
tamento & descritto mediante variabili nascoste. Si mostra che le corrispondenti equazioni
di evoluzione, insieme alle usuali equazioni di bilancio, individuano un sistema iperbolico
di equazioni quasi-lineari. Tra le onde ammesse dalla teoria si esaminano in dettaglio le
onde trasversali propagantisi in regioni in equilibrio; tali onde risultano eccezionali.

1. INTRODUCTION

Elasticity, viscosity, and heat conduction are outstanding features ex-
hibited by the behaviour of material bodies. It is the aim of the constitutive
theories to provide appropriate schemes whereby these features are accounted
for so as to make the theoretical predictions as close as possible to the
experimental results. Within the framework of fluiddynamics a prominent
constitutive model is the Maxwell fluid where viscosity involves a relaxation:
time [1]. An improvement of the Maxwell fluid is supplied by the Maxwellian
materials investigated by Coleman, Greenberg and Gurtin [2]. Also, in
connection with heat conduction models, we know the Maxwell-Cattaneo
equation [3, 4]; to my mind Cattaneo’s paper [4] marks the beginning of
the wide activity in the context of constitutive theories compatible with
wave propagation.

The recent scientific literature bears ‘evidence of the hidden variables
as a very fruitful tool in constitutive theories [5—7]. For instance, the
question of wave propagation in heat-conducting viscous fluids has been
given a satisfactory solution by having recourse to fluids with hidden vari-
ables [8~10]. This fact is hardly surprising inasmuch as account for hidden
variables amounts to describing in a suitable way relaxation phenomena
actually occurring in fluids.

To get further insights into the hidden variable approach this note
investigates a model of fluid with hidden variables—sec. 2—from the stand-
point of quasi-linear systems of equations, It is shown that if the present
values of the hidden variables vanish then the corresponding system of
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equations turns out to be hyperbolic—sec. 3. This warrants the study of .
wave—weak discontinuity—propagation into a region at equilibrium; a con-
spicuous result of this study, namely the exceptionality of the transverse
waves, is delivered in section 4.

2. [ESSENTIALS OF HIDDEN VARIABLES IN FLUIDDYNAMICS

Henceforth fluids with hidden variables are specified by C? response
functions

(2.1) c=0(0,p,¢, e

and by the linear evolution equations

) I

a = p V6 —ey, 1 >o,
(2.2)

) 1

& — = (D . a//) , '>0 ,

where o € R3 and ¢’ € Sym (R3 R?) are the hidden variables while the
other notations are the usual ones [g]. The strict counterparts of Navier-
Stokes’ and Fourier’s laws are obtained by choosing the free energy ¢ as

f xt

YO e @, @)=Y 0,0+ 15

o o + LLT” o'’ . o'’ + _%_ 7\711 (l‘r 06”)2} .

Indeed compatibility with the second law of thermodynamics in the form
of the Clausius-Duhem “inequality implies that [9]

w=o , 3htzp=o , x=o,
and
xr .,
n:—‘lﬁe—i—z—p—éga.u ,
(2.3) ‘
T=—pl+2pe” + 2l ,  q=—xa.

The pressure p is defined as p = p?{,; the subscripts 0, p denote partial -
differentiations, » 1 ‘
Before examining some properties of the present hidden variable
approach it is worth pointing out that evolution equations like (2.2) are
well known in the literature. For example, letting &’ = T/2 ur'’ eq. (2.2),
becomes just the constitutive equation of the Maxwell fluid. Also, letting
o = —gqfx eq. (2.2), becomes the Maxwell-Cattaneo equation. Moreover,
equations accounting for relaxation phenomena have a structure like (2.2); -
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such is the case, for example, of Graffi’s equations for the mechanical
behaviour of ionised gases [11] and of Coleman-Gurtin’s equations for the
thermal behaviour of gases [12]. Yet, the very advantage of the hidden
variable approach over other continuum approaches is that the evolution
equations are incorporated into a systematic scheme leading to constitutive
equations which are automatically consistent with thermodynamics.

3. HYPERBOLICITY OF THE QUASI-LINEAR SYSTEM

On adopting the usual notations [9] the balance equations read
¢+ eV:-V=o,
(3.1) . pV—V.T=0,
6—T:D+V.g=o0.

Introduce now a fixed orthonormal basis e, e,,e; and the ordered array

A ’ ' ’ ’ rr rr rr 1% 17
u :(P,V;;,Vl,vz,0,063,0(1,0(2,0(33,0(11,0(22,0(13,0(23’(112),

Then, on appealing to the constitutive equations (2.3), a direct calculation
allows us to write the full set of the balance equations (3.1) and of the
evolution equations (2.2) as a first-order quasi-linear system, namely

(3.2) W+ (@i =0,

The array &“ contains terms dependent on ¢, 06, ¢ ¢’ but not on their
derivatives; next developments are unaffected by the particular structure
of 6* and, meanwhile, they involve the 14X 14 matrices (ai)AB ,i=1,2,3,
only through the matrix (3.3).

Let f(x,%)=o0 be a surface in space-time and denote by n = Vf[| Vf|
its unit normal, For f = o to be a characteristic surface the function f must
satisfy the determinantal equation

| @' fii + 8% ful=o0.

In conjunction with the general theory [13, 14] we can say that the system
(3.2) is hyperbolic if all the eigenvalues of (@')%s n; are real and if (ai)AB n;
possesses a complete set of linearly independent eigenvectors. Without any
loss of generality set e; = »m; then the matrix (ai)AB n; takes the simplified
form -

(1) Latin small (capital) indices haves the range 1,2,3(1,2,---,14) and repeated
indices are summed over this range. A subscript preceded by a comma indicates differentia-
tion with respect to the corresponding z-coordinate ;z, = 7.
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where
Vo=Ven | a=d-n | =20/,
& = — (2 urfp) o — (Mp) (1 + = tr &),
g = —(2p7"/p) oge — WNe) 1+ " #r ey,

s =—(2ufe) (1 + 7 ) — (o) (1 + 7" r @)

To determine all the eigenvalues of (ai)AB n; in the general case is a
prohibitive task. Conversely it is a simple matter to see that if the present
values of the hidden variables ¢’ &'’ are unrestricted then the system (3.2)
may be non-hyperbolic [15]. In view of ‘this I have elected to evaluate
the eigenvalues of (3.3) under the assumption that the present values of
the hidden variables vanish ®, In such a case a straightforward calculation
yields the following eigenvalues

o=V, m==6, c}"an—l—Uf , m=1,
v \E g =V,—U; mo= 1
L‘%:V”—*— 17 ] m:2! " ’ ’
PT
s =V,+U; |, m=1,
1
_— . w2 _
‘T ‘_V'n (pT”) ) m 2’ P =Vn__Us , m=1,

m being the multiplicity of the eigenvalue. The fast and slow speeds
U;,U; > 0 are given by

Us=3{6+ @ —a0)f} , U=3{6—0@"—s0),
where
i 2 b 2[.};"’"7\ - % 2P«+7\
4)—.p9+ pe,ne T,” + pT” ) w0 = pe 7]0 TI (?9_’" [LT” );

the symbol p, denoting the derivative of p with respect to o at constant
entropy. Of course, as we should expect, the previous set of eigenvalues
collapses to

=V, , =V, +@} , c=V,— (B}

when heat conduction and viscosity are disregarded.

In spite of the fact that only seven distinct eigenvalues occur, it is a
routine matter to show that fourteen linearly independent réal eigenvectors
can be found. Hence we conclude that if ¢ = 0, ¢’ = 0 then the system
(3.2) is hyperbolic. '

(2) The physical motivation of this choice will become apparent shortly.
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4. TRANSVERSE WAVES

The speed of displacement of a wave front f(x,¢) = o must coincide
with any of the eigenvalues (3.4). The admissible jump discontinuity of 2"
across f =0 is given, to within a multiplicative constant, by the corre-
sponding right eigenvector #* of (ai)AB n;. On the other hand, according to
eq. (2.2), if the fluid has been held at equilibrium (V6 =0, D = 0) up to
time ¢ then the hidden variables too vanish up to time z In view of these
facts we can conclude that the set of eigenvalues (3.4) provides the admissible
speeds of displacement of waves propagating into a region at equilibrium,

Look now at the propagation modes associated with plane waves pro-
pagating in the fluid at the speeds cf}: =V, + (p./p'r”)*. Consistently with
the condition » = 2, for any eigenvalue ¢f and ¢ we find two linearly
independent right eigenvectors ()", (78)" and ()7, (). If we let
o« =0, ¢ =0 they can be written in the reduced forms

1
Avt P\
<71)0 =(O,O,I,O,O,O,O,O,O,O,O,:F%(“T,,) ,0,0),
(4.1)

' 1
Anck P )2
<72>0 ———-(O,O,O,I,O,O,O,O,O,O,O,O,:F%(“T") ;0)’

which are easily seen to correspond to transverse waves polarised in the
directions e, e,, respectively. This is so because the third (fourth) and the
twelfth (thirteenth) components are proportional to the jumps of V, V, (V, V,)
and V, s V., oc;;;), respectively. © Further, one glance at (4.1) allows us to
assert that, like the Alfvén waves, the transverse waves in heat-conducting
viscous fluids are hydrodynamic homothermal waves, that is to say [V, p] = 0,
[V,0]=o0.

A noteworthy property of the transverse waves concerns the evolution
of the discontinuity. Indeed a routine calculation proves that the transverse
waves propagating into a region at equilibrium are exceptional; this gener-
alises the analogous result found by Bampi and myself [15] in connection
with viscous fluids (x = 0). To derive this result observe first that the
left eigenvectors /s of (2;)"sn; pertaining to the eigenvalues cf may be
written as '

LLT/I %
1\+
(ZA) =(0’0’%’0’070)0)o!o’o’o’q:( ) ’O}O))

wer \3
2\+ “
o) =(o,o,o,%,o,o,o,o,o,o,o,o,:F( ,o),
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even though & #%0,¢” # 0. Accordingly the quantity [14]
N = {Do (4 ()"*8)}o £ Do ¢")o + {Dalsha fa 7)o o

vanishes identically and this in turn implies the exceptionality of the trans-
verse waves,

It is worth emphasising that the existence of transverse waves is not
exclusive consequence of the present hidden variable model. For example,
besides an alternative to the present model outlined in [9] § 5, as shown
by Franchi [16] also a Maxwell-like fluid model [17] accounts for the exist-
ence of transverse hydrodynamic homothermal waves.
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