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Fisica matematica. — On the contribution of heat flux to the pro-
pagation velocity of Relativistic shock waves in thermo-elastic Bodies .
Nota I di ALpo BRESsaN, presentata ®” dal Corrisp. G. GRIOLI.

RIASSUNTO. — Si studiano onde d’urto termomeccaniche, (precisamente T—wm—onde
d’urto) in corpi elastici (o fluidi non viscosi) in una teoria di relativitd ristretta o generale,
includente il tensore termodinamico di C. Eckart (cfr. [2]). La velocitd di propagazione V
di queste & calcolata in vari casi, almeno a meno di termini d’ordine 2 (rispetto a 1/c ove ¢
¢ la velocita della Iuce nel vuoto). A questo scopo & essenziale usare, per esempio, un certo

3

postulato di carattere generale, il quale & compatibile con un’ipotesi di solito fatta implici-
tamente. Nel caso pill generale V dipende da certi rapporti fra parametri di discontinuita
e loro derivate. Questi rapporti spariscono in casi speciali importanti concernenti i solidi, e
in ogni caso riguardante i fluidi. In particolare & posta in evidenza la dipendenza di V dal
flusso di calore.

I. INTRODUCTION

The present work, divided into two notes, is based on the theory &
of (special or general) relativity, of Eckart’s type, presented e.g. in [2]; and
it deals with a T-n-shock wave o, [N. 4] travelling in a thermo-elastic body
%, so that by definition the position gradient of, (4-velocity %), absolute
temperature T, and specific entropy % have first order discontinuities [of] to
[n] across o,, while position, the metric tensor ges, and its first and second
partial derivatives are continuous across ;. The body ¥ is regarded, first,
as a fluid [NN. 1-6] and then, more generally, also as an elastic body
[NN. 7-9]. ,

This work is compatible with the assumption [y] = o, usually made
when the heat'flux vector vanishes (¢ = o0). However it is not restricted to
it.  More generally [n] is postulated to be a certain (constitutive) linear
function of [#"] (cfr. Post. 6.1 for fluids and Post. 8.1 for elastic bodies).
This is reasonable because, since (generally) [T] o0 across 6, by the
Fourier law the heat that at the ‘ instant” # crosses the material surface G*
occupied by o, at #, has the expression ©0-0, so that it may have any
finite value. '

Experiments say that, even if [4] = 0 cannot be postulated, [n] must
be very small with respect to e.g. [T]. Since relativistic corrections also
are very small, the afore-mentioned general postulates (compatible with
[7] # 0) are more interesting than their analogues in classical physics

(*) This work has been prepared within the sphere of activity of Research group n. 3,
in the C.N.R. (Consiglio Nazionale delle Ricerche) in the academic year 1978/79.
(**) Nella seduta del 14 giugno 1979.
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(cf. [4]). However to consider their special case [7] = o is important also
in &, e.g. for comparison with previous results.

The main aim of this work is to calculate the propagation speed V
of o, either exactly or up to terms of order 4 (in 1/c, where ¢ is the speed
of light in vacuum). If % is an elastic body, in the general case certain ratios
among discontinuity parameters and their spatial derivatives occur in our
expressions for V [N. 9]; however they disappear in most important cases.
Such ratios never appear when % is a (non-viscous) fluid [N. 6]. For these
fluids V can be determined up to terms of order 6 (cf. (6.6)); furthermore,
if the heat flux vector ¢* is orthogonal to o,, an exact polynomial equation
of the third order in V holds (cf. (5.13)) with IE} =o.

The relativistic corrections to V, of order 2, for non-viscous fluids, in
the general case are put in evidence by (6.5). Among them the contribution
of ¢" is generally 7 o0. Similar corrections of the same order, seem to
exist for elastic bodies in the general case (cf. (9.4-6)); and the relativistic
contributions of order 2, in these results, due to ¢* are satisfactory because
of the same order are the relativistic corrections found so far (cf. e.g.
[2, § 66D).

The aforementioned results contain new features also for ¢* =o (and
when % is a fluid) in that [x] is allowed to be 7= 0. The secular equation (9.8)
in V, for T-n-shock waves in elastic bodies with ¢* =0 = [1] ® " shows
that V coincides with its well known analogue for acceleration waves
(cf. [2, §66]).

The present work is a relativistic extension of the first part of [4]
belonging to classical physics; hence it is also related with the analogue [3]
of [4] for acceleration waves; and its motivations appear strengthened by
considerations made in [3] or [4]. However the present work is independent
of these papers, not yet published or appeared.

Some preliminaries based on [2] concern space-time and discontinuity
waves from the Eulerian and Lagrangian points of view [NN. 2, 3, 519.
A natural analogue of the global balance equations for energy and mo-
mentum is postulated in general relativity and from it the corresponding
Kotchine theorems on o, are deduced [N. 4]. Some thermo-mechanic
considerations [N. 5] allow us to find the afore-mentioned expressions
for V in connection with viscous fluids.  Thermo-mechanic equations

(1) The autor has not seen such a result on shock waves (in elastic solids with
¢* =0 =[n]) in the literature.

(2) The relativistic relation (5.4) between [V] and the discontinuity [cz® Ng} of the
normal velocity of %, as well as its proof, has been written only because in the present frame
work the proof is very short.
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for shock waves in elastic solids are deduced in N. 7. With the aid of
Post 8.1 they allow us to determine V in the general elastic case and in some
important special cases, in various ways.

2. PRELIMINARIES ON SPACE-TIME FROM THE EULERIAN
AND LAGRANGIAN POINTS OF VIEW

For phenomena in the relativistic space time S, we use the notations
of [2]. By z° we denote the co-ordinates of the typical event point & (of Sy)
in the admissible frame or co-ordinate system (x), and by ®

(2.1) ds® = — goe d2® da° with g4 <o

the space time metric in S,.

Let € be a 3-dimensional continuous body, thought of as a set of
matter points. Let D denote differentiation along world-lines and set

« Di% « D 1 .. 1
(22) "w =g, A=pmo, S =gatuwuy , Top=T pge

Let d€ be an element of ¥ containing the matter point P*  Let
d¥ [c2 p dC] be the actual proper volume [gravitational mass] of d%, and
let dC* [£* dC*] be its analogue in the reference state X* (of ¥). Denote
by £ the actual density of the conventional (or proper reference) mass 2% dC*
(of d%) (cf. [2, p. 54]). Then the specific internal energy w of ¥ at P+
can be defined briefly by

(2.3) p=£k( +w) (b dC = &* dC¥) .

By “ specific”” we mean both proper and per unit proper reference
mass.

The preceding considerations of a Eulerian type are fit to treat e.g,
fluids. For dealing with solids, in particular (thermo-)elastic materials, the
Lagrangian point of view is convenient., So we introduce a reference con-
figuration (cf. [2, p. 139]) taken by % together with the state X* along
a reference process ¥, on the hypersurface »° = o, where (¥) is an admissible
co-ordinate system for the version Si of S, related to #*. Then the L-th
co-ordinate of the intersection of this hypersurface with the world-line of
the (arbitrary) matter point P* of € is called the L-th material co-ordinate
of P* (cf. ftn. ®). The (strictly positive) material metric ds** (relative to P*
and (y)) is defined by

(2.4) ds* = afm dyL dyM with  aim (yl, y2, ys) = gliM (o, J’l, ¥ J’s) )

(3) Greek [Latin] indices run from o [1] to 3. Einstein’s convention on free or bound
4

indices is used —e.g. T°}; = o stands for: 20T97° =o0(p=0,+,3).
o=
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where go, is the space-time metric tensor associated with #°. The motion /4
of € in ¥, has a representation

(2.5) =2, =2, ) [t=7% (],

-

which is determined only up to a substitution of the time parameter #
(cf. [2, p. 140]). We also introduce the position gradient of, the (first
right) Cauchy-Green tensor Cim and the deformation tensor epm (cf. [2, § 531;

1 1 )
(2.6) of =g6xL , aim + 2 etm = Cim = £oo ¥ 27M (f,L = W{) ;

furthermore the volume ratio 9 = dC/dC* and the spatial inverse 27 vy of
af, (cf. [2, (36.40, (56.9), and (56.15)])

2 dC * _I I. © 1s
_ — — @
(2.7) S ? (dc*) o= detlCumll ,  vo'ai = 9g5,
L ye=0 |, Yoohi=%ax a*zdetlltlfM”- ,

3. ON SURFACES MOVING IN SPACE-TIME

Let 65 be a time-like hypersurface travelling in the world-tube We¢ of ¢
and represented by (3.1), below.

@B f@=fE- =0 , e, »N=flx¢ N =o0.

Equation (3.1), represents the image o3 = o3 () of o3 in the reference
configuration (i.e. a 2-dimensional surface moving in a 3-dimensional Rie-
mannian space). Let V [V,] be the propagation speed of o5 [03] at x [(Z, »)]
and call N, [#7] the spatial normal [the normal] unit vector of &, [o3] at
the same event point (N, is normal to the intersection o, of o3 with the
hypersurface x, = const.), Then (cf. [2, (65.3-6)] remarking that here we
give signs to V and V, and use more general co-ordinates)

Lo
G2 Ne=fy , &V=—dps (& =8 fio fie, 8> 0),
9*
33 &AL=SL g*V*=~—§t (& =FLF™, gx>0)
for Dx® = Ds = D¢,
N ,
(34) &AL =gN,of W.=%=Y=Y,

where

-1
35 r=CM AT, v =(CTN,NJ  with C*=afa™
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Relations (3.4) can be proved easily by choosing the frame (x) [(#)] to be
locally natural and proper [geodesic] @,

(3.6) { =23 , fo=—% , gor=o0 ; & =3;
3.
( al-)iM = dm ) ﬂiM,H =0.

As is well known, () and 7 can be so chosen that (3.3)s,¢ hold along
the world-line Wp« of every matter point P* in €,

The absolute derivative T....,s of a double tensor T... is now relative
to ‘the choice of the time parameter ¢ (cf. (2.5)y). For a locally time-
orthogonal choice of it (i.e. ? (x)p locally parallel with 2, we have the
Lagrangian spatial derivative T..[|a, which has tensorial expressions inde-
pendent of the choice of 7 (cf. e.g. [2, §353, (53.9)]):

Dt ¢

;
% Dy “A (ua = tp 27n) .

(37) T'A:T /pdA+T

We use o1, 22 briefly v, as parameters for the equations

(3.8) =00 =000, 0Y)

of 6,(¢) and o3 (f) respectively—where o, (f) [0 (#)] is also represented by

(3-1)2 [(3.1)4] in case # =",
For the second fundamental form bym [&ggg] of o3 [0z = o2 ()] the

following holds in the Riemannian space S, [S5] of metric tensor geo [arm]:
(3.9) b = Ny Noyg = — 250 NSg | buyg = M -/V;L = —J/];}I '/‘f;e.@
We accept the conventions

(3.10) 2Tee) = Tes +Toe , 2 Tiea] = Too — Top .

4. BASIC RELATIVISTIC EQUATIONS FOR THERMO-ELASTIC CONTINUOUS MEDIA,
AN ANALOGUE FOR THE BALANCE OF ENERGY AND LINEAR MOMENTUM
IN GENERAL RELATIVITY

Let g, be the (spatial relativistic) heat flux vector, so that for every
spatial unit vector N,,¢" Ny is the energy dW that by heat conduction
crosses a material surface of unit normal Ng, per unit proper area and

(4) Assume (3.6). Then, first g*./VI:* =f,'L=f"r x"y,=gN,2"; hence (3.4);. By
(3.6) and (3.3)4_q, cf,p P = Of*[3¢, which by (3.2); and (3.3); yields (3.4);. By (3.5);,
S =Mf fu=MF, f 2Ly =g N, N, C'", which by (3.5), yields (3.4)s.
-1
Lastly by (2.6), cM — 8’3 y oM s furthermore gN, =/ =7 yf‘, =g, ./VL*J/{‘T
Hence g% =g° 8" N, N, =22 2 G MXNF. By (3.5); and (3.4), this yields (3.4),.
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Romer time (¢" N, = d* W/de Ds). We consider the (ordinary size) Fourier
coefficient ¢§ = ¢#; connected with the Fourier-Eckart law (4.1) below,
as a functions of y, «, and v (cf. [2, (25.2), p. 64])

(4.1) 9a = A (T +TA) |, d=cH(y,a,m).

Denoting the (spatial) Euler stress tensor by X*° (= X%), the conservation
equations

(4.2) U =o0, where %°° = s’ + X*° + 2 4 q°) (¢° o = 0)

hold in both special and general relativity. Let us choose arbitrarily a
vector field ¥, of class C™ and a space-time region ¥, whose (3-dimensional)
boundary = = V] is piecewise of class C®. Let #,dZ be the typical
element of X oriented inward (#°#, = 41 unless #,dZ =o0). Then if,
in addition, %, is continuous in 7} and (4.2) holds there (nearly everywhere),

(4.3) f Vo #*° 1y dZ = — f W yo 4° A, V¥, eCY) .
b 7,
Now fix the index p and identify ¥, with the gradient xf, = 8 of #° in the
arbitrary frame (x). Thus Yoo = — {:a}. Then (writing f,, for 3f/ox")
(4.4) fﬂz/”n d2=f‘p}02/"°d"//"
. g lac 4
= ¥y
hence
(4.4") f"Z/” 1edS =0 for gep,y =0.
z

Thus, in special relativity, (4.4") holds whenever (x) is a Minkowskian frame.
In this case, especially when 7, is small and the speed of matter inside 77,
relative to (x), is not large, (4.4") can be easily recognized to express the
balance of linear momentum (for ¢ =1,2,3) and the one of energy for
¢ =0. (Indeed the local analogue holds for equation (4.2);, up to terms
of order 2). In classical physics such integral balance relations are assumed
to hold also when ¥, contains singular surfaces. Then it is natural to do
the same in special relativity. This can be stated in the form (4.3) which
is meaningful also in general relativity:

PRINCIPLE of energy-momentum balance in special or gemeral relativity.
Equality (4.3) holds for every vector field Yo of class C® and every space-
time region ¥y with FVy piecewise of class c®.

The region ¥, above may include an (oriented singular) surface o3,
across which o, X® ¢° and #° have discontinuities of the first kind—to be
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denoted by [ 1. In general relativity we assume
4.5) [ges] = 0 = [goo,v] across Gy

Under the assumptions above o, will be called a T-vn-skock wave. By
Einstein’s gravitational equations we generally have [ges,u] 0 across
shock waves.

Now let us remark that oz a shock wave o, we have the relativistic
discontinuity relation for energy-momentum balance ’

(4.6) [Ny = — - [ uy  No =0

where Ng s the unit vector for the spatial section 6, of 63, oriented positively.

Indeed by reasoning like in [35, p. 527] to prove the classical version
of Kotchine’s theorem, we identify ¥, with a small cylinder that is symmetric
with respect to a (practically) circular small neighborhood .4#" in oz, of an
event point & €c;. We keep A fixed and let ¥} shrink down to A7
Furthermore let (3.6) hold at &, so that 7, dX is proportional to f,,. Then

47 [@1fe=0 , f.=gN, and ofo=—Vg=Veu.

Thus (4.6) holds (in every frame).

5. KINEMATIC AND DYNAMIC CONSIDERATIONS ON CERTAIN EULERIAN
AND LAGRANGIAN DISCONTINUITIES ACROSS SMALL SHOCK WAVES

The discontinuities across the material image o; of o4, as well as those
across oy itself, will be denoted by [ ]. Then there is a spatial vector B},
related to o, for which

) [1=BLA , c1=—V.BL (Blu=o, [] =[]
Indeed (5.1)1,» obviously hold for some B}; and since #"u, = —1, by
(5.1)3, (5.1)5 holds; hence (5.1), also does. We also have

(52) VI2]=9V,BiN, , VI =[N, (V, 2N, = Vy M.

Indeed by (2.7); and (3.4)1 £« MF vy = gPN,, which by (3.4), yields
(5.2);5. By (2.7)1,2, (2.6)5, and (3.6), the first of the relations

Va

(520 @=detal] , [21=y5ld] = BA =

92BN,

holds. By (2.7)s, (5.1)1, and (5.2)3 it yields (5.2")2-4; hence (5.2);. By (2.3):
and (2.7); D% = k* (and #* is supposed to be continuous). Then by (5.2")s4
and (5.1),, VO [£] = —V[2] 2= —V, £ BN, = c&" [’] N,; hence (5.2),.
g.e.d.
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Since [£%1=24®[+"], by (3.2)s £lgl=fio?'fis&’], so that by
<3.2)2’1 and <S.I>4

(53 Le] = — /i [°] = — - N [°].

By (3.2)21 and (5.1), again, [g]1V +£[V]=—d [] = — gN, [},
which by (5.3) yields

(5.4) 1= (1) e N

Remark that this relativistic kinematic relation between [V] and

[c«° N,] coincides with its classical correspondent (cf. [5, (185.6), p. 513])
only for V =o.

Now remark that (4.2); and the relations XPY — 0 = X* u, yield
55 [Flue=—l , X1=IX"] , [Xeo]s’ =—X, [
hence by (5.1)s, (3.6) implies
66 =7l , X1=X"@l , [X]1=o0=[].

Now let us choose (x) in such a way that, besides (3.6), we have N, = 3.
By (4.2) and (3.6)ss (1= —1,— [V ue = [%°]) and (3.6), for such
a choice of (x) the discontinuity relation (4.6) becomes

(3.7) e’ [4°] + [X°3] +2[°14” + £ [4"] =
= ([p]2® + ¢ [+] + X* [,] + «° ¢° [us]+[q°])~

By (3.6)s and (5.6), for ¢ = and p = o this simplifies into

| X714 240 7] = (o )+ X7 o] + 0D~
(5.8) ' | v
| oL+ X% ] + 161 = (@61 + 2" [

respectively. From (5.8), for » = 3 and from (5.8), multlphed by Vet we
obtain

\ s V2 2 _
59 X142 ] = (ol + 24" D) 5 = [o] 5 + 7]
where |r‘ means a term of the same order as ¢, so that ¢° [u] — l 2\

Remark that if the hear flux is (spatially) orthogonal to the wave
o, (5.9 simplifies into

(5.9 1= Y —2 (1= %) ¢* i @ 1.
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Incidentally by (5.2), and (2.3), for N, = 5
(510)  U=AB bl =(w) B+ A Te] = <o 14 £ ],
so that (5.8), yields, under condition (3.6),
(5.1 ] = (L] + 2" ] - — X" [1] N, = 3.

Now let ¥ be a non-viscous fluid (X" = p8™). For it (5.8), with
r=1,2 and (5.9) are equivalent—by (5.10)—z0

(vETEL =g~ -1,
(5.12) ] . .
(2] = —2L VA + [(1 + %) 14+ — [l + 5 ¢ I%s]} Ve

Incidentally remark that for % the classical analogue of [c,]—given
by (5.8), with 1/c =0, whence ¢" = o—vanishes for %=1, 2; (consequently)
[crg,] = |§] by (s.12); (4= 1,2). Then by (5.10), for non-viscous fluids
and for §° arbitrary (5.9) (and (5.12),) become '

(519 =161 % —2 (1~ ) ¢ bl 4[] =

() () 22 vm L v+ (E

where, for ¢° | N, | 6| = o rigorousty.
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