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A ldo Bressan, On the contribution of heat flux , ecc. SIS

Fisica matematica. — On the contribution of heat f lu x  to the pro­
pagation velocity o f Relativistic shock waves in thermo-elastic B odies^ . 
Nota I di A ld o  B re s s a n , presentata (**> dal Corrisp. G. G r io l i .

RIASSUNTO, — Si studiano onde d’urto termomeccaniche, (precisamente T-yj-onde 
d’urto) in corpi elastici (o fluidi non viscosi) in una teoria di relatività ristretta o generale, 
includente il tensore termodinamico di C. Eckart (cfr. [2]). La velocità di propagazione V 
di queste è calcolata in vari casi, almeno a meno di termini d’ordine 2 (rispetto a i  jc ove c 
è la velocità della luce nel vuoto). A questo scopo è essenziale usare, per esempio, un certo 
postulato di carattere generale, il quale è compatibile con un’ipotesi di solito fatta implici­
tamente. Nel caso più generale V dipende da certi rapporti fra parametri di discontinuità 
e loro derivate. Questi rapporti spariscono in casi speciali importanti concernenti i solidi, e 
in ogni caso riguardante i fluidi. In particolare è posta in evidenza la dipendenza di V dal 
flusso di calore.

i. I ntroduction

The present work, divided into two notes, is based on the theory 
of (special or general) relativity, of Eckart’s type, presented e.g. in [2]; and 
it deals with a T-Y)-shock wave at [N. 4] travelling in a thermo-elastic body 

so that by definition the position gradient <*£, (4-velocity up), absolute 
temperature T, and specific entropy yj have first order discontinuities [ocl] to 
biY  across atf while position, the metric tensor go®, and its first and second 
partial derivatives are continuous across at . The body is regarded, first, 
as a fluid [NN. 1-6] and then, more generally, also as an elastic body 
[NN. 7-9].

This work is compatible with the assumption [•/)] =  o, usually made 
when the heat flux vector vanishes (cf =  o). However it is not restricted to 
it. More generally [*/)] is postulated to be a certain (constitutive) linear 
function of [ua] (cfr. Post. 6.1 for fluids and Post. 8.1 for elastic bodies). 
This is reasonable because, since (generally) [T] o across at, by the 
Fourier law the heat that at the “ instant ” t crosses the material surface cr* 
occupied by cr̂  at f, has the expression 00 • o , so that it may have any 
finite value.

Experiments say that, even if [7)] =  o cannot be postulated, [y]] must 
be very small with respect to e.g. [T]. Since relativistic corrections also 
are very small, the afore-mentioned general postulates (compatible with 
bil o) are more interesting than their analogues in classical physics

(*) This work has been prepared within the sphere of activity of Research group n. 3, 
in the C.N.R. (Consiglio Nazionale delle Ricerche) in the academic year 1978/79.

(**) Nella seduta del 14 giugno 1979.
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(cf. [4]). However to consider their special case [y)] =  0 is important also 
in e.g. for comparison with previous results.

The main aim of this work is to calculate the propagation speed V 
of at either exactly or up to terms of order 4 (in 1 jc, where c is the speed 
of light in vacuum). If ^  is an elastic body, in the general case certain ratios 
among discontinuity parameters and their spatial derivatives occur in our 
expressions for V [N. 9]; however they disappear in most important cases. 
Such ratios never appear when ^  is a (non-viscous) fluid [N. 6]. For these 
fluids V can be determined up to terms of order 6 (cf. (6.6)); furthermore, 
if the heat flux vector qa is orthogonal to G t )  an exact polynomial equation 
of the third order in V holds (cf. (5.13)) with j_6_| =  o.

The relativistic corrections to V, of order 2, for non-viscous fluids, in 
the general case are put in evidence by (6.5). Among them the contribution 
of qa is generally 9^ o. Similar corrections of the same order, seem to 
exist for elastic bodies in the general case (cf. (9.4-6)); and the relativistic 
contributions of order 2, in these results, due to qa are satisfactory because 
of the same order are the relativistic corrections found so far (cf. e.g.
[2, § 66]).

The aforementioned results contain new features also for qa = o (and 
when ^  is a fluid) in that [7]] is allowed to be 9^0. The secular equation (9.8) 
in V, for T-yj-shock waves in elastic bodies with qa =  o (1), shows
that V coincides with its well known analogue for acceleration waves 
(cf. [2, § 66]).

The present work is a relativistic extension of the first part of [4] 
belonging to classical physics; hence it is also related with the analogue [3] 
of [4] for acceleration waves; and its motivations appear strengthened by 
considerations made in [3] or [4]. However the present work is independent 
of these papers, not yet published or appeared.

Some preliminaries based on [2] concern space-time and discontinuity 
waves from the Eulerian and Lagrangian points of view [NN. 2, 3, 5 ](2). 
A natural analogue, of the global balance equations for energy and mo­
mentum is postulated in general relativity and from it the corresponding 
Kotchine theorems on . at are deduced [N. 4]. Some thermo-mechanic 
considerations [N. 5] allow us to find the afore-mentioned expressions
for V in connection with viscous fluids. Thermo-mechanic equations

(1) The autor has not seen such a result on shock waves (in elastic solids with 
ya — o =  [*/)]) in the literature.

(2) The relativistic relation (5.4) between fV] and the discontinuity [ ^ pNp] of the 
normal velocity of as well as its proof, has been written only because in the present frame 
work the proof is very short.
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for shock waves in elastic solids are deduced in N. 7. With the aid of 
Post 8.1 they allow us to determine V in the general elastic case and in some 
important special cases, in various ways.

2. Preliminaries on space-time from the Eulerian
AND LAGRANGIAN POINTS OF VIEW

For phenomena in the relativistic space time S4 we use the notations 
of [2]. By x 9 we denote the co-ordinates of the typical event point ê  (of S4) 
in the admissible frame or co-ordinate system (x)i and b y (3)

(2.1) d/  =  — dx9 dx° with g 00 < 0

the space time metric in S4.
Let ^  be a 3-dimensional continuous body, thought of as a set of 

matter points. Let D denote differentiation along world-lines and set

. a _  D^a * Dua 1 _  _ T ... iß(2.2) ’ u — , A — , g  aß g  aß "b ^ß , T.../J — T .../ß^a .

Let àtë be an element of ^  containing the matter point P*. Let 
dfâ [c~ 2 p dC] be the actual proper volume [gravitational mass] of dfé7, and 
let d O  [k* dO ] be its analogue in the reference state S* (of ^). Denote 
by k the actual density of the conventional (or proper reference) mass k* d O  
(of d^) (cf. [2, p. 54]). Then the specific internal energy w of ^  at P* 
can be defined briefly by

(2.3) p = k(c 2 -\-w) (k dC =  k* dO ) .

By “ specific ” we mean both proper and per unit proper reference 
mass.

The preceding considerations of a Eulerian type are fit to treat e.g. 
fluids. For dealing with solids, in particular (thermo-)elastic materials, the 
Lagrangian point of view is convenient. So we introduce a reference con­
figuration (cf. [2, p. 139]) taken by ^  together with the state 2*, along 
a reference process on the hypersurface y° — o, where (jy) is an admissible 
co-ordinate system for the version SÎ of S4 related to 0 ^. Then the L-th
co-ordinate of the intersection of this hypersurface with the world-line of 
the (arbitrary) matter point P* of ^  is called the L-th material co-ordinate 
of P* (cf. ftn. (3)). The (strictly positive) material metric ds* 2 (relative to 0 * 
and (jy)) is defined by
/ \ 1 ■X’2 1 L t IVI *1 ^ /  I 2 3\ L  /  1 2  3\(2.4) ds =  aLM dy dy with aLM (y , y  , y )  = g LM ( p ,y  , y ,  y  ) 9

(3) Greek [Latin] indices run from o [1] to 3. Einstein’s convention on free or bound
4

indices is used -e.g. Tp°0 =  o stands for: 2  Tp°0 =  o (p =  o , • • •, 3).
0=0 '
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where is the space-time metric tensor associated with . The motion J i  
of ^  in S4 has a representation

(2.5) *p =  xp ( t , y L) = xp((, y) [ t = t  (*)] ,

which is determined only up to a substitution of the time parameter t 
(cf. [2, p. 140]). We also introduce the position gradient ap , the (first 
right) Cauchy-Green tensor Clm and the deformation tensor slm (cf. [2, §53];

/ s-\ P Ip O * I ' /~i I p O I X 1 .
( 2 . 6 )  a L =  L , ^LM +  2  £ lM  =  C lm  =  g p a  * fL X t M I y ,L  =  J  ’

furthermore the volume ratio Q) =  dC/dC* and the spatial inverse yp of 
(cf. [2, (56.4)!, (56.9X, and (56.15)])

(2.7) S ® ' = ( ^ ) = ? - det||C“ 11 ' =

I /2° Ye =  O , Y » a M =  ^ <2ML , a =  det H Ï̂mII ■

3. On surfaces moving in  space-tim e

Let <r3 be a time-like hypersurface. travelling in the world-tube W<r of 
and represented by (3.1)2 below.

(3-0 / ( * )  - f ( A ‘ ■ - , xS) =  0 , ^ f \ x ( t , y ) \  = 0 .

Equation (3.1)4 represents the image at =  at (?) of o3 in the reference 
configuration (i.e. a 2-dimensional surface moving in a 3-dimensional Rie- 
mannian space). Let V [V*] be the propagation speed of <r3 [a-J] at x  [(t, y)] 
and call Np [«/CL] the spatial normal [the normal] unit vector of cr3 [c?2] at 
the same event point (Np is normal to the intersection a2 of cr3 with the 
hypersurface x Q =  const.). Then (cf. [2, (65.3-6)] remarking that here we 
give signs to V and V* and use more general co-ordinates)

(3-2) ^Np = / x  , g V =  —  cfl? ( / =  i P° //p / /a  , g  >  O) ,

(3.3) g *  ■ * ! = / , 1  , g*  v x =
__  cf *  

dt ( /* =  / / l / * /L, £*  >  o)

for D a 0 =  "Ds =  cD t

(3.4) g*  - U  = £ 'N p  aL ,

*
<

\< II II

°4
ÿ> II Y' = T >

w here

(3-5) Y =  ( C ^ ^ l , T' == (C'po N p N ^ w ith  C /po — aL aoL.
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Relations (3.4) can be proved easily by choosing the frame (*) Ky)i to be 
locally natural and proper [geodesic] (4):

 ̂ g r s  ~  ^rs  > gOp —  ^Op , g p o ,X  —  O ; U  =  §o ]

&UA — SLm , <̂ LM,H =  O .

As is well known, (x) and t can be so chosen that (3.3)5j6 hold along 
the world-line Wp* of every matter point P* in

The absolute derivative T . . . ;a  of a  double tensor. TÜ! is now relative
to the choice of the time parameter t (cf. (2.5)3). For a locally time-
orthogonal choice of it (i.e. t (x)jp locally parallel with up) we have the 
Lagrangian spatial derivative T!!!|a, which has tensorial expressions inde­
pendent of the choice of t (cf. e.g. [2, § 53, (53.9)}):

(3-7) T...|a — T.../p a9A +  T .../a H— ---- :Ds ^  . (^a = u9 #pa) .

We use v1, v2, briefly Vs* y as parameters for the equations

(3.8) *p =  *p ( t , Vs*) , /  =  /  ( t , Vs*)

of c2 (f) and cf (t) respectively-—where c2 (t) [cf (t)] is also represented by
(3-1)2' [(ß-OJ in case t = x°.

For the second fundamental form of c3 [c2 =  c2 (/)] the
following holds in the Riemannian space S4 [Sf] of metric tensor g9a [<2*m]i

(3-9) bsta =  Np Np̂ ^  — —'X*j/ Np̂  , •

We accept the conventions 

(3*ïo) 2 T(po) =  Tpc +  Top , 2 T[Po] ■= Tpo — Top .

4. Basic relativistic equations for thermo-elastic continuous media.
An analogue for th e  balance of energy  and lin ea r  momentum

in  general  relativity

Let be the (spatial relativistic) heat flux vector, so that for every 
spatial unit vector N «, qa Na is the energy dW that by heat conduction 
crosses a material surface of unit normal Na , per unit proper area and

(4) Assume (3.6). Then, first =  / }l  =  / ,r  ^  hence (3-4)x- By
(3.6) and (3.3)4-6, t f , puP= which by (3.2)3 and (3.3)3 yields (3-4)2. By (3.5)3,
4 =  Slm/ jL/ ;M=  8LM/ , / iS/ L ^ M = / N f N ,C 'r’, which by (3.5)2 yields (3-4)3-

Lastly by (2.6)3 CLM = S rs furthermore = f  r = / >L y^r = j V * y Lr .

Hence /  =  g2 8rs Nr Ns =  g \  CLM J f *  J Ç . By (3.5)! and (3.4)3 this yields (3.4)4.



Römer time (ga Na =  d2W /daD s). We consider the (ordinary size) Fourier 
coefficient Ca — c#d£ connected with the Fourier-Eckart law (4.1) below, 
as a functions of y  , a, and vj (cf. [2, (25.2), p. 64])

(4-0 Ça =  (T/j +  TAp) , <£ =  (y , a , yj) .

Denoting the (spatial) Euler stress tensor by Xpo (=  Xop), the conservation 
equations

(4.2) =  o , where $tpa =  ç>up u° +  Xpo +  2 qa) (qp up =  o)

hold in both special and general relativity. Let us choose arbitrarily a 
vector field T a of class C(1) and a space-time region ^  whose (3-dimensional) 
boundary 2 =  ^ ^  is piecewise of class C(2). Let np d2 be the typical 
element of 2 oriented inward (np np =  di 1 unless np d2 =  o). Then if, 
in addition, °lipG is continuous in and (4.2) holds there (nearly everywhere),

(4-3) (  Ya na dS =  — f  T a/o ^ ao dn  (VYa € C(1)) .

Now fix the index p and identify T a with the gradient x% — Sp of xp in the 

arbitrary frame (x): Thus T a/0 =  —■ . Then (writing f tP for df/dxp)

(4.4) j  ^  n* dS =  j  j ^ j  d-r4 ;
s r 4

hence

(4.4') J  ^ P °  d2 =  o for ^aß,Y =  0 .
s

Thus, in special relativity, (4.4') holds whenever (x) is a Minkowskian frame. 
In this case, especially when ^  is small and the speed of matter inside i r4t} 
relative to (#), is not large, (4.4')- can be easily recognized to express the 
balance of linear momentum (for ■ p =  1 , 2 , 3 )  and the one of energy for 
p .= o. (Indeed the local analogue holds for equation (4.2)2 up to terms 
of order 2). In classical physics such integral balance relations are assumed 
to hold also when ^  contains singular surfaces. Then it is natural to do 
the same in special relativity. This can be stated in the form (4.3) which 
is meaningful also in general relativity:

PRINCIPLE of energy-momentum balance in special or general relativity. 
Equality (4.3) holds fo r  every vector field  T*« of class C(1) and every space- 
time region ^  with piecewise of class C(2).

The region ^  above may include an (oriented singular) surface cr3> 
across which p , Xpo, qp, and ifi have discontinuities of the first kind—to be

320  Lincei -  Rend. Se. fis. mat. e nat. -  Vol. LXVII -  novembre 1979
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denoted by [ ]. In general relativity we assume

(4.5) [£po] =  O =  [^po>Y] across aB.

Under the assumptions above at will be called a T-r\-shock wave. By 
Einstein’s gravitational equations we generally have [^p0,Xn.] 7  ̂o across 
shock waves.

Now let us remark that on a shock wave <5 t we have the relativistic 
discontinuity relation for energy-momentum balance

(4.6) [^ po] Na =  — —  [^ po] u« (N0 u — o , N" N0 =  1),

where Np is the unit vector fo r the spatial section a2 of a3, oriented positively.
Indeed by reasoning like in [5, p. 527] to prove the classical version 

of Kotchine's theorem, we identify i r± with a small cylinder that is symmetric 
with respect to a (practically) circular small neighborhood J f  in <r3, of an 
event point ^ e a 3. We keep J f  fixed and let if^ shrink down to Jf. 
Furthermore let (3.6) hold at <f, so that np dS is proportional to / >p. Then

(4-7) f,a  =  o , f , r = gN r and cf,0 -  -  =  Vgu0 .

Thus (4.6) holds (in every frame).

5. K inem atic  and  dynamic considerations on certain  E u lerian

AND LAGRANGIAN DISCONTINUITIES ACROSS SMALL SHOCK WAVES

The discontinuities across the material image af of cr3, as well as those
across c3 itself, will be denoted by [ ]. Then there is a spatial vector B^,,
related to af, for which

(5.1) K ]  =  , c [ u p] =  -  y» Bp (b : «P =  o , [u p] =  [up] t )  •

Indeed (5.1)1,2 obviously hold for some B^; and since u* u^ = — 1, by
(5.ï)2, (5.1)3 holds; hence (5.1)4 also does. We also have

(5.2) V [ ^ ]  =  W * B P NP , V[ k]  = ck[up] N,  (V*ÄNP = V YJ ' '^ ) .

Indeed by (2.7)3 and (3.4)1 g * ^ *  = g9 >Np, which by (3.4)3 yields
(5.2) 3 . By (2.7)1,3, (2.6)3, and (3.6), the first of the relations

(5.2') 3  =  det II «LII , m  =  Yp [<Æ] =  Yp b :  J Ç  =  3 B I  Np

holds. By (2.7)3, (S-Oi. and (5-2)a it yields (5 .2 ')^; hence (5.2)1. By (2.3)3 
and (2.7)3 3k =  k* (and k* is supposed to be continuous). Then by (5.2')2_4 
and (s.i)2, V 3 [k] =  — N \3\ k  =  — V* /è* Bp Np =  cl? [up] Np ; hence (5.2)3.

q.e.d.
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Since [ge°] = 2 u(9 [u%  by (3.2)3 g [g] =  //p «V/o W ] , so that by
(3.2) 2,1 and (5.i )4

(5.3) M  =  - — / * [ « " ] [ » T
C i'

By (3.2)2,1 and (5.1)4 again, [^]V  +  ^[V ] =  — c fPlu9] =  — cgNplu9], 
which by (5.3) yields

(5.4) [V] =  — ( i - ~ )  [ ^ e Np],

Remark that this relativistic kinematic relation between [V] and 
leu9 Np] coincides with its classical correspondent (cf. [5, ( ïS5.6), p. 513]) 
only for V =  o.

Now remark that (4.2)3 and the relations X[po1 =  o =  Xpo ua yield

(5.5) V ]  «p = - V  [«„] , [Xpo] =  [Xnp] , [Xpo] u° =  —  Xp<3 \ u \  ;

hence by (5.1)4, (3-6) implies

(5.6) [ / ]  =  /  t«.1 , [Xp0] =  Xps [«.] , [X00] =  o =  [u°] .

Now let us choose (x) in such a way that, besides (3.6), we have Np =  Sp. 
By (4.2)2 and (3.6)4,2 (u0 =  — 1, — [&//pa] ua =  [df90]) and (5.6), fo r  such 
a choice of (x) the discontinuity relation (4.6) becomes

(5.7) P^P lu ]  +  [Xp3] +  2 [u(9] qZ) +  u9 [ / ]  =

~  ([?] +  p [mp] +  Xp [^s] +  mp qs [us] l<f\) •

By (3.6)4 and (.5.6), for p = .r  and p =  o this simplifies into

\ [X '3] +  2 /  [ur)] =  (P  [ur] +  X "  [us] +  [ / ] )  X  ,
(5.8)

I P lu ]  +  X3s [US] +  [ / ]  =  ([p] +  2 /  [*,]) —

respectively. From (5.8)4 for r =  3 and from (5.8)2 multiplied by Ver1 we 
obtain <

(5-9) [X33] + 2 /  [u3] =  ([p] +  2 qs K ] )  ~  =  [p] +  |T |

where means a term of the same order as c~ry so that qs — |~2~|.
Remark that i f  the heat flux  is (spatially) orthogonal to the wave 

C(, (5.9)1 simplifies into

tX33] = [ p ] ^ - 2 ( l - ^ - )(5.9') (?P|| Np).
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Incidentally by (5.2)2 and (2.3), fo r  Np =  8®

(5.10) f \ k \  =  k \ u \  , [p] =  ( f - f w )  [k] f l k  [w] = - f  p [u\  f l k  [«/], 

so that (5.8)3 yields, under condition (3.6),

(5.11) . [ / ]  =  (* M  +  2 / k D y - X ' W  (Np .= Sp) .

Now let ^  be a non-viscous fluid (Xrs =  p 8rs). For it (5.8)1 with 
r =  I , 2 (5.9)1 equivalent■—by (5.10)—to

( v  [ ,/]  =  /  [?/ ]  -  A  [ / ] ,  (a =  1 , 2) ,

v [/& 1  +  {(1 +  f 2J  +

Incidentally remark that for fé7 the classical analogue of [£%]—given 
by (5.8)x with ijc — o, whence qr =  o—vanishes for A =  1 , 2; (consequently) 
[ ^ Ä] — |_2_| by (5.12)5 (ä =  I , 2). Then by (5.10)! fo r  non-viscous fluids 
and for ( f  arbitrary (5.9)1 (and (5.12)3) become

V2 / V2\ .__,
(5-13) [ p ]  =  [ p i ~ 2-2 ^ 1 — - ^ r j  ? [«*]  + |±l  =

=  | ( '  +  7 ) v - ( . ^ ) ( f v |  [ ']  +  4  V* M  +  a

where, fo r  q9 || Np, | 6_| = 0  rigorously.
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