ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

EUGENIO SINESTRARI

Asymptotic behaviour of solutions of a non linear model of population dynamics

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **67** (1979), n.3-4, p. 186–190.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1979_8_67_3-4_186_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/ Analisi matematica. — Asymptotic behaviour of solutions of a non linear model of population dynamics. Nota^(*) di EUGENIO SINESTRARI^(**), presentata dal Socio G. SANSONE.

RIASSUNTO. — Si studia l'esistenza e l'unicità delle soluzioni stazionarie di una equazione funzionale non lineare proveniente dalla dinamica di popolazione e se ne dimostra la stabilità.

1. INTRODUCTION

In a previous paper [1] we introduced a non linear version of the classical Lotka-Von Foerster equations which leads to the problem of finding $u(a, t) \ge 0$ such that

(P)
$$\begin{cases} Du(a,t) = -m(a, u(a,t))u(a,t) & 0 \le a < \omega, t \ge 0. \\ u(0,t) = \int_{0}^{\omega} b(a, u(a,t))u(a,t) da & t > 0 \\ u(a, 0) = p(a) & 0 \le a < \omega \end{cases}$$

where $Du(a, t) = \lim_{h \to 0} \frac{u(a+h, t+h) - u(a, t)}{h}$, *m*, *b* and *p* are given functions and ω is a given positive number. We will set $A = [0, \omega]$ and u(0, t) = B(t). For the physical meaning of the problem we refer to [1].

Global existence and uniqueness results for the solution to (P) were obtained under the following assumptions:

 (m_1) m(a, u) is continuous and non negative on A×R₊

$$(m_2)$$
 $u \to m (a, u)$ is non decreasing

(m₃) given
$$a \in A$$
 and $\delta > 0$, $\lim_{k \to \omega} \int_{a}^{b} m(x, u) dx = +\infty$ uniformly for $u \le \delta$

k

- (b_1) b(a, u) is continuous and non negative on $A \times R_+$ and $b^* = \sup b < +\infty$
- $\begin{array}{ll} (b_2) & \text{given } \delta > \text{o, there exists } \mathbf{L} = \mathbf{L} \left(\delta \right) \text{ such that } | b \left(a , u' \right) b \left(a , u'' \right) | \\ & \leq \mathbf{L} | u' u'' | \text{ for } a \in \mathbf{A} \text{ and } \mathbf{o} \leq u', u'' \leq \delta. \end{array}$

(*) Pervenuta all'Accademia il 31 luglio 1979.

(**) Istituto Matematico «G. Castelnuovo», Università di Roma.

EUGENIO SINESTRARI, Asymptotic behaviour of solutions, ecc.

 (p_1) p is piecewise continuous and non negative on A

$$(p_2)$$
 $p^* = \sup p$ and $P_0 = \int_0^{\infty} p(a) da$ are finite.

In this paper we need also the following conditions:

- (m_4) $m_u(a, u)$ exists continuous on A×R₊
- (b_3) $b_u(a, u) \leq 0$ and is continuous on A×R₊

2. STATIONARY SOLUTIONS

In this section we want to give conditions for the existence of stationary solutions of problem (P): they correspond to the equilibrium age distributions for the population.

DEFINITION 1. A function $a \rightarrow p(a)$ from A to \mathbb{R}_+ is a stationary solution of (P) if the following equations are satisfied:

(S)
$$\begin{cases} p'(a) = -m(a, p(a)) p(a) & a \in A \\ p(0) = \int_{0}^{\omega} b(a, p(a)) p(a) da \end{cases}$$

We shall assume $p(0) = \varepsilon > 0$ so that $p \equiv 0$; in [1] we proved the existence and uniqueness of the solution of (S_1) in A, when p(0) is a prescribed positive number.

PROPOSITION 1. Let $p_{\varepsilon} : A \rightarrow R_{+}$ be a solution to

(1)
$$\begin{cases} p'(a) = -m(a, p(a)) p(a) & a \in A \\ p(0) = \varepsilon \end{cases}$$

then p_{ε} is a stationary solution to (P) if and only if

$$\mathbf{F}(\varepsilon) = \int_{0}^{\omega} b(a, p_{\varepsilon}(a)) p_{\varepsilon}(a) \cdot \varepsilon^{-1} da = \mathbf{I}.$$

LEMMA 1. The function $\varepsilon \to F(\varepsilon)$ is non increasing on $]o, +\infty[$ so that there exist $F(o^+)$ and $F(\infty)$. If $u \to m(a, u)$ and $u \to b(a, u)$ are strictly monotonic then F is strictly decreasing.

Proof. If
$$o < \varepsilon < \varepsilon'$$
, then $p_{\varepsilon} < p_{\varepsilon'}$. From (I) we deduce that $p_{\varepsilon}(a) = \varepsilon \exp\left(-\int_{0}^{a} m(x, p_{\varepsilon}(x)) dx\right)$ hence $\varepsilon \to p_{\varepsilon}(a)\varepsilon^{-1}$ is non increasing by (m_2) ;

from (b_3) it follows that $\varepsilon \to F(\varepsilon)$ is non increasing. The last part of the theorem is obvious.

We give now conditions for the existence and uniqueness of stationary solutions to (P).

THEOREM 1. If there is a stationary solution then $F(o^+) \ge 1$ and $F(\infty) \le 1$. Conversely let $F(o^+) > 1$ and $F(\infty) < 1$: then there exists stationary solutions; if in addition $u \to m(a, u)$ and $u \to b(a, u)$ are strictly monotonic then the stationary solution is unique.

The proof is a consequence of lemma 1.

In many practical situations, $p_{\varepsilon}(a)$ can be written in closed form so that $F(o^+)$ and $F(\infty)$ can be computed explicitly.

3. STABILITY OF STATIONARY SOLUTIONS.

In this section we shall suppose that there exists a stationary solution $p_{\varepsilon}(a)$ to (P) and we want to investigate the asymptotic behaviour of a solution to (P), close to p_{ε} at t = 0.

Let $u: A \times R_+ \rightarrow R_+$ be a solution to (P). Set

$$\begin{cases} r(a,t) = u(a,t) - p_{\varepsilon}(a) \\ R(t) = r(o,t) = B(t) - \varepsilon \\ \rho(a) = r(a,o) = p(a) - p_{\varepsilon}(a). \end{cases}$$

With these notations and taking into account (P) and (S) we can write the equations satisfied by r(a, t):

(R)
$$\begin{cases} Dr(a,t) = -\lambda(a,t)r(a,t) & a \in A, t \ge 0 \\ r(0,t) = \int_{0}^{\infty} H(a,t)r(a,t) da & t > 0 \\ r(a,0) = -\rho(a) & a \in A \end{cases}$$

where

$$\begin{cases} \lambda(a,t) = m_u(a, p_{\varepsilon}(a) + \theta r(a,t)) p_{\varepsilon}(a) + m(a, p_{\varepsilon}(a) + r(a,t)) \\ H(a,t) = b_u(a, p_{\varepsilon}(a) + \theta' r(a,t)) p_{\varepsilon}(a) + b(a, p_{\varepsilon}(a) + r(a,t)) \end{cases}$$

with suitable θ , $\theta' \in [0, 1]$.

From (R) is follows that

$$(a,t) = \begin{cases} R(t-a) \exp\left(-\int_{0}^{a} \lambda(x,t-a+x) dx\right) & a < t \end{cases}$$

$$\left(\begin{array}{c} \rho \left(a-t \right) \exp \left(-\int\limits_{0}^{t} \lambda \left(a-t+x , x \right) \mathrm{d}x \right) \right) \qquad a \geq t \end{array} \right)$$

hence from (R_2) we obtain an integral equation which is satisfied by R(t):

(2)
$$R(t) = \int_{0}^{t} K(a, t) R(t-a) da + f(t)$$
 $t \ge 0$

where:

Y

$$\mathbf{K}(a,t) = \begin{cases} \mathbf{H}(a,t) \exp\left(-\int_{\mathbf{0}}^{a} \lambda(x,t-a+x) \, \mathrm{d}x\right) & a \leq t, a < \omega \\ \mathbf{0} & a \geq t, a \geq \omega \end{cases}$$

and

$$f(t) = \begin{cases} \int_{t}^{\omega} H(a, t) \exp\left(-\int_{0}^{t} \lambda(a - t + x, x) dx\right) \rho(a - t) da, & 0 \le t \le \omega \\ 0, & t \ge \omega. \end{cases}$$

We give now a theorem about the stability of a stationary solution to (P).

THEOREM 2. Let $p_{\varepsilon}(a)$ be a stationary solution such that the following condition holds:

(L)
$$\int_{0}^{\omega} |b_{u}(a, p_{\varepsilon}(a)) p_{\varepsilon}(a) + b(a, p_{\varepsilon}(a))| \exp\left(-\int_{0}^{a} (m_{u}(x, p_{\varepsilon}(x)) p_{\varepsilon}(x) + m(x, p_{\varepsilon}(x))) dx\right) da < 1$$

Then p_{ε} is locally stable i.e. for each $\eta > 0$ there exists δ_{η} such that if u is a solution to (P) with $|u(a, 0) - p_{\varepsilon}(a)| < \delta_{\eta}$ for $a \in A$ then $|u(a, t) - p_{\varepsilon}(a)| \le \eta$ for $a \in A$ and each $t \ge 0$.

Condition (L) is verified for example when $b_u(a, u) < 0$ and $b_u(a, u) u + b(a, u) \ge 0$ or when b does not depend on u and for each $\bar{u}, m_u(a, \bar{u}) \equiv 0$ on A. When $b_u \equiv m_u \equiv 0$, i.e. in the linear case, the behaviour of solutions is well known (see [2]).

13. -- RENDICONTI 1979, vol. LXVII, fasc. 3-4.

Proof. Let us denote by L the integral in condition (L). From (b_3) and (m_4) it is not difficult to prove that given $\gamma \in]L$, I[there exists $\delta > 0$ such that if $t > \omega$ and $|R(s)| < \delta$ for $s \in [0, t]$ then

(3)
$$\int_{0}^{\omega} |K(a,t)| da < \gamma < 1.$$

By using Theorem 5 of [1] it is possible to find a constant c such that if $|\rho(a)| < 1$ then for $0 \le t < \omega$

(4)
$$|\mathbf{R}(t)| \leq c \int_{\mathbf{0}}^{\mathbf{\omega}} |\rho(a)| \, \mathrm{d}a.$$

Let us choose $\eta < I$. Then by taking $\delta_{\eta} = \min(\eta, \delta(\omega c)^{-1}, \eta(\omega c)^{-1})$ it can be proved by contradiction that (3) holds for every *t*. From this the conclusion follows easily.

We give now a last result which gives more precise informations about the behaviour of the birth rate B(t) = u(0, t) for large t.

THEOREM 3. Let p_{ε} be a stationary solution such that (L) holds; then there exist c and $\delta > 0$ such that if u is a solution to (P) with $|u(a, 0) - p_{\varepsilon}(a)| < \delta$ for $a \in A$ then we have $|u(0, t) - \varepsilon| \sim \exp(-ct)$.

Proof. Take $\gamma \in]L$, I [and choose c > 0 such that $\gamma \exp(c \omega) < I$. Set $G(t) = R(t) \exp(ct)$. We must show that G(t) is bounded when $|\rho(a)| < \delta$ where δ is defined in the proof of Theorem 2. From (2) we get for $t \in [\omega, T]$:

 $| \underset{t \in [0,T]}{\operatorname{G}(t)} | \leq \underset{t \in [0,T]}{\operatorname{sup}} | \underset{0}{\operatorname{G}(t)} | \underset{0}{\int} | \underset{0}{\operatorname{K}(a,t)} | \operatorname{exp}(ca) \, \mathrm{d}a \leq (\underset{t \in [0,\omega]}{\operatorname{sup}} | \underset{0}{\operatorname{G}(t)} | + \underset{t \in [\omega,T]}{\operatorname{sup}} | \underset{0}{\operatorname{G}(t)} |)$ $\gamma \operatorname{exp}(c\omega).$

Hence

$$(\mathbf{I} - \gamma \exp (c\omega)) \sup_{t \in [\omega, T]} |\mathbf{G}(t)| \leq \sup_{t \in [0, \omega]} |\mathbf{G}(t)|.$$

Letting $T \rightarrow +\infty$, the conclusion follows.

References

- [1] E. SINESTRARI A non linear functional renewal equation. « Rend. Acc. Naz. Lincei ».
- [2] F. HOPPENSTEADT (1975) Mathematical theories of Populations: Demographics, Genetics and Epidemics, S.I.A.M., Philadelphia.