
ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

Mario Landucci

Solutions with "precise" compact support of the
∂̄-Problem in strictly pseudoconvex domains and
some consequences

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche,
Matematiche e Naturali. Rendiconti, Serie 8, Vol. 67 (1979), n.1-2, p. 81–86.
Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1979_8_67_1-2_81_0>

L’utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di
ricerca e studio. Non è consentito l’utilizzo dello stesso per motivi commerciali. Tutte le
copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)

SIMAI & UMI
http://www.bdim.eu/

http://www.bdim.eu/item?id=RLINA_1979_8_67_1-2_81_0
http://www.bdim.eu/


Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e
Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1979.



M ari O LAN du CCI, Solutions with ‘ ‘ precise ’ ’ compact support, ecc. 8 1

Geometria. — Solutions with “ precise ” compact support of the 
a-Problem in strictly pseudoconvex domains and some consequences 
N ota(#) d i M a r i o  L a n d u c c i ,  presentata <**> dal Socio G. Z a p p a .

R iassunto. — Si forniscono soluzioni con supporto compatto «preciso» del a-problema 
in domini strettamente pseudoconvessi, e se ne deducono alcune conseguenze.

i. Introduction and  motivation of the problem

Let D a bounded strictly pseudoconvex domain in O  , n >  2 , with smooth 
boundary, i.e.

D =  {2 e U : p (V) <  0} , U=>D

where p is a strictly plurisubharmonic C°° function near 9D and grad p ^ o  
on 3D.

I f / i s  a (o , q +  1) a-closed differential form with C* (D), k >  1, coef
ficients, then the 9-equation

(1) d U — f

has solutions Ch (D) which satisfy the uniform estimates (see [3])

(2) \\u lls+j <  Q. (D) II/IIj

where
H • II* =  max sup J D 1,- I

I I I <  h D

(D1 any differentiation of order <  k)

II u\\k+i = m a x \ \\u\\k ; max sup
L J  11 z , z ' e D

and Ck (D) is a numerical constant depending only on k and D; this, in par
ticular, means that (i) has solutions which improve the regularity of g  of an 
Holder exponent |r.

If in addition /  is compactly supported on D (that is s u p p /ç; D) and 
k =  00 thm in [1] implies that fixed any D r => D it is, consequently, possible 
to find solutions of (i) compactly supported in D'.

D1 u (2 ) — T ru  (#') 1
i * — /  i* I

(*) Lavoro eseguito nell’ambito dell’attività del G.N.S.A.G.A del C.N.R. 
(**) Pervenuta all’Accademia il 17 luglio 1979.

6. — RENDICONTI 1979, voi. LXVII, fase. 1-2.
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From above it naturally arises the question to know if it is possible to 
find solutions of (1) which conserve the same support of the data, when supp f  
is a strictly pseudoconvex domain, and at the same time improve its regu
larity (i.e. it is possible to prove estimates of type (2) for these solutions).

The motivation of such a question lies on the fact that the knowledge 
of solutions with these properties allows

a) to give an “ Hartogs-like theorem”, with estimates, for 3-closed 
differential forms on a annolus difference of two strictly pseudoconvex do
mains (Proposition 1);

b) to characterize the boundary values of 3-closed forms (Propo
sition 2);

c) to reduce the study, in the differential case, of ^-operator on 3D 
to the study of 3-operator on D (Proposition 3).

2. Statement of the main Theorem and sketch of the proof 

The following theorem holds,

Theorem. Let f  be a (o , q +  1) 3-closed form with CÄ-1(D) coefficients, 
11/lb <  00 and support of f  D. Then if  q <  n —■ 1 (1) has always a solution 
u e Ck0+k (D) (the equality of supports verifies when support f  — D) s.t.

IMb+i < C | | / | b

I f  q =  n — I there exists u with the previous properties i f  and only if

j  hf / \d z x A- • • t \d z n =  o 
c*

for every h holomorphic in D and smooth on D .
j
Remarks'.

A) We shall not examine the case q =  o because in this case the theo
rem follows directly from [5] jointly with [6].

B) The additional hypothesis required in the case q =  n — 1 is effecti
vely necessary: let us take in fact the Bochner-Martinelli kernel ¥L(z ,w ) 
and a function cp which takes values 1 near 3D and o in a neighbourhood 
of w y then for every h holomorphic in D and continuous in D we have,

h (w) — |* hq> K (z , w) =  j  h 3 (9 K)
z e 2D z e D

Suppose h (w) #  o : as 3 (9 k) is compactly supported (K is 3-closed and 
smooth for z^hw) if the theorem would be true, without additional hypo
thesis in the case q =  n — i , this would imply (by Stokes’ theorem) h (w) =  o. 
Absurd.
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Sketch of the proof of the Theorem

Firstable we take an explicit particular solution of (1) (unfortunately 
not compactly supported) defined in Cn which is given by

(+ )  u ( w ) = J f A K s ( ï , w)
cn

where is the ^-th Bochner-Martinelli-Koppelman kernel and we prove the 
required regularity for ü.

The strategy is now to correct ü by a 3-exact for which coincides with 
ü near 3D and outside D.

For this purpose we use the geometrical assumptions on D, that is the 
existence of a function ® (Ç , w) =  • (£*— w^)y Henkin’s function (see
[4]), which is holomorphic in ÇeU,  U  open neighbourhood of D, for fixed 
w  in a neighbourhood of 3D, and whose zero set lies entirely outside D, when 
w e  Cn — D.

By the O /s we then construct Cauchy-Fantappiè forms (Ç , w)  s.t.
KÎ (Ç >w) =  3rü,q +  dw 0 4+1 for q <  n — i , Kn_x (Ç, w) =  dw Qn +  holom- 

fune, in w  and this impies, by (+) ,  that

u =  dv outside D and near 3D

where

V. (w) =  J f  A û î+1 (Ç , w )
D

The second part of the proof consists of a careful study of the regularity of 
v in terms of / .

The theorem now follows taking a convenient estension of v (w) , V (w), 
to D which preserves the regularity of v (being 3D smooth this is always 
possible): the differential form u =  ü — dv is the required solution.

3. SOME APPLICATIONS AND CONSEQUENCES

Let Dj^DDDg two strictly pseudoconvex domains with smooth boundaries 
and Q =  Dx — D2.

P r o p o s i t io n  i. Let ^ a (o  , q +  i )  , q <  n -— i ,  differential form  3- 
closed and smooth in Q

Then there exists a (o , q +  1) differential form  T* smooth and 3-closed 
in Dx which extends <]; (t.e. Tjn =  and such that

i | Y | j * _ 1+ l < C * | K U . 0 f
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I f q  — n — i , the extension T* with the previous properties exists provided that

j hty !\ dz , A ♦ • • A dzn =  o
9D2

fo r  every h  holomorphic in D2 and smooth in D2.

Proof. Take a C°° extension of <J>, ip, to D1 preserving its regularity. 
Then it is sufficient to apply the theorem to the 3-problem

du =  9

The differential form W  ̂— u satisfies the thesis.
Proposition 1 has the obvious consequence that the 3-problem

3a =  ß

with ßeC*(Q) and =  o on Q, admits solutions a which satisfy

||a ||,_1+ i < C , | | ß | | ,

Definition. Let /  a (o , ÿ +  1) differential form Ck on 3D (i.e. the restric
tion of a (o , q +  1) Ck differential form defined in a neighbourhood of 3D) 
we shall say that

= 0

if and only if for every 0 (n , n — q — 2) differential form smooth in D 
and 3-closed we have,

( + + )  I / A  0 =  0
dD

We otserve that if /  is the boundary value of a 3-closed differential form 
then clearly dh f  =  o (it is sufficient to apply Stokes’ theorem).

This condition, in the strictly pseudoconvex case, is also sufficient. In 
fact we have,

Proposition 2. Let f  a Ck (3D) (o , q) differential form restriction to 3D 
of / ,  then it is the boundary value of a 3- closed differential form  F if  and only 
if  dbf = o .  Furthermore the extension F satisfies,

| |F| | t_1+JtD< C | | 7 | | MD.

Line of the proof: The first step is to show that, as 3&/ = 0 ,  we can then 
construct an extension F of f  to D s.t.

3 F =  o (p*-1) 

where p is the defining function of D.
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The second step is to prove, with a similar argument used in the proof 
of the theorem, that in this case the 3-problem

du =  d F

admits C*~1+  ̂ compactly supported solutions s.t.

II«I1*-i+» < c4 ||F||*;

Finally the differential form

F =  F — u

completely satisfies the thesis.
Let us consider now the 3&-equation on 3D

( +  +  +). 2>b u = /

(for the relative definitions see [2]) where /  is a (o  , q -f- 1) q <  n — 1 , C* (3D) 
differential form which satisfies the necessary compatibility condition dbf  =  o.

By Proposition 2 /  is then the boundary value of a 3-closed form in 
D, say F.

Solving now in D the 3-equation,

3U =  F

it clearly follows that u =  U |3d is a solution of ( +  +  +)•
In conclusion we have that,

Proposition 3. Let D a strictly pseudoconvex domain in Cnywith smooth 
boundary, and f  a C k (3D) , ~db-closed differential form , restriction of f  to 3D. 
Then the db-equation

db U = f

admits ( / ~ 1+  ̂(D) solutions which satisfy the uniform estimates

l k l b - i + i < Q | | / | | , .

The proofs of the Theorem and propositions will appear in all the details 
elsewhere.

(*) Added in Proof : In «Bulletin des Sciences Mathématiques» with the title, Solutions 
with precise compact support of du = f .
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