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Equazioni differenziali ordinarie. — Analytical theory of non-
linear oscillations X: some classes of equations & -+ g (x) = o with
no finite Fourier series solution. Nota ® di CHIKE OBI, presentata
dal Socio G. SANSONE.

RIASSUNTO. — Si dimostra che I’equazione considerata nel titolo ammette soluzioni
periodiche rappresentabili da una serie di Fourier con un numero finito di termini solo
se g(x) & lineare.

§ 1. Let us say that a solution x (#) of the differential equation
(1.1) 4+ gx=o (& = dx/d2)

in the real domain is a finite Fourier series solution of degree # if x (£) has the
least period 2 mp~ in # and its Fourier series in the interval o <¢ << 2 mwp™?
terminates and is of the form

n
x(@) =L1A,+ ,2=1 (A, cos 7 pt + B, sin x pf)

where (A, , B,) # (0, 0).

In papers VII, VIII and IX [1, 2, 3] of this series we asserted that
when g (%) is non-linear and every solution of (1.1) oscillates with the same least
period then equation (1.1) has no finite Fourier series solution. The sole aim
of this paper is to give a proof of this assertion formalised in Theorem 2 below.
In the process of achieving this aim we prove Theorem 1 below which esta-
blishes some classes of equations of the form (i.1) with no finite Fourier series
solutions. The paper is an extract from an unpublished paper on equations
of the form (1.1) with finite Fourier series solutions referred to in papers VII,
VIII and IX of this series.

It is well-known that

(1) If there is an interval |x | << A in which (i) g (#) is continuous,
(ii) sgn g () = sgnx, and (iii) a solution of (1.1) with an initial condition in
| x| <A is unique then the solution of (1.1) with a stationary value a > o

at ¢ = 0 is an even periodic function of # for all « in a certain interval 0 < a <
<A, <A.

Let &g = &g (£) = o (a0, p#) denote the solution just mentioned and let
2wp~ = 2 mwp~! («) denote its least period. The basic question of which this
paper is a partial answer is this: Is there a set of values ¢, of 2 in 0 < & < A,

(*) Pervenuta all’Accademia il 21 agosto 1979.
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or in 0 < a0 < 00 such that ¢, («, p?) is a finite Fourier series whenever o = «,?
Our interest in this question (which can stand on its own as a purely analytical
question) arises from well-known results in the theory of non-linear oscillations
which indicate that the number of frequencies of a periodic oscillation of a
perturbation of (1.1) depends on the number of frequencies of &, (a, p?),
and when the latter is infinite so is the former.

§ 2. Since ¢, is even in # it follows that its Fourier series (in its interval
of periodicity 0 <¢# << 2 mwp™) is of the form

0=a(oc;0)+_z a (o5 m,) cos m, p (o) ¢
r=1

where none of the coefficients @ (a;m,) (r =1,2,---) is identically 0, and
where the sequence (w,) (» =1,2,--+) is a strictly ascending sequence of
positive integers. It is easy to see that if ¢, is a finite Fourier series of degree n,
then ¢, can be put in the form

(2.1) ‘ o= P, (n), % = cos pt,

where

(2.2) P,()= D a,o", ayFo,
r=0

and the coefficients @, = a, () are independent of .

The change of variables from # to # transforms equation (1.1) to
(2:3) ! (1 —w?) xt — prux! + g (x) =0
where ! == dx/ds.
Since ¢, satisfies (1.1) it follows from (2.3) that
| £ () = ot udh — ¢ (1 — 1) &8
and so it follows from (2.1) that

(2.4) 8 ($o) = Qu ()

where
(25> : Qn (u) = TZ_O br L by = PZ n* ay -

The following Theorem is imminent.

THEOREM 1. [f subject to (i), (ii) and (iii) of (1°) of § 1 equation (1.1) has
a finite Fourier sevies solution of degree n and least period 2 mwp™ then there exists
a constant . > O Such that

(a) x'g@@) —p? as |x|—>o00 if nis odd;
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(D) if n is cven then either g(x) is complex as x — — 00, and x7'g(x) — u?
as x > 0 or g(x) is complex as x — 0, and x g (x) > p* as x —>— 0

© en=u.

For, if ¢, is a finite Fourier series of degree »# then by (2.1) and (2.4)
we have

(2.6) x=P,(), £x=0Q®
which with (2.2) and (2.5) give
xu™ —>a, F# 0, gx)u™ — a, o n

as |u| —>o00.

§ 3. THEOREM 2. [f subject to (i), (ii) and (iii) of (1°) of § 1 all the solutions
of equation (1.1) oscillate with the same least period then equation (1.1) has a
finite Fourier series solution if and only if g (x) is linear.

Proof. Suppose that all the hypotheses hold. The hypothesis that all
the solutions of (1.1) oscillate with the same least period implies, inter alia,
that sgn g(x) = sgnx in | x| < co and so implies by Theorem 1 (b). that every
finite Fourier series solution of (1.1)1is of odd degree, and by Theorem 1 (a)
that there is a constant g > o such that g (x) - u? as | x| — co. Since
sgn g (x) = sgnx in | x| < co we have for the least period 2 mwp™ of ¢, («, pZ)
(defined in § 1) the formula

G met= [ G —2G @y
where
(3.2) G@=G(, a<o and G(x)= [-g (&) dg.

0

If p is independet of « then

o

ol = lim | {2G (@) —2G &)} " dz.

Hence, since x 7 g (x) — u? as |x¥| — 00 so that aa' — —1 as a — 0o, we have

npt =zt f (1 — £2>—1/2 d¢ ,
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that is to say, p = @. Substituting p = % in the equation pz = p. of Theorem
1(c) we get » = 1. Hence in this case we have (cfr. (2.6))

X = a, + a, cos p¢
g (x) = ua, cos pr.

So g (x) = p2(x —a,) and the theorem is established.
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