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Chike Obi, Analytical theory of non-linear oscillations X, ecc. S3

Equazioni differenziali ordinarie. — A nalytical theory of non­
linear oscillations X: some classes of equations x +  g  (x) ----- o with 
no finite Fourier series solution. Nota(‘> di Chike O bi, presentata 
dal Socio G. S ansone.

Riassunto. — Si dimostra che l ’equazione considerata nel titolo ammette soluzioni 
periodiche rappresentabili da una serie di Fourier con un numero finito di termini solo 
se g(x)  è lineare.

§ i. Let us say that a solution x  (t) of the differential equation 

( i. i )  x  -f- g  (x) =  o (x == dx/dt)

in the real domain is a finite Fourier series solution of degree n if x  ( t) has the 
least period 2 7rp—1 in t  and its Fourier series in the interval o < t  <  2 7rp-1 
terminates and is of the form

n

x ( f)  — \  A 0 +  2  (Ar cos r Pt +  By sin x  pt)
r —1

where (An B n) fi- (o , o).
In papers VII,  V i l i  and IX [1, 2, 3] of this series we asserted that 

when g  (pc) is non-linear and every solution of ( i . i )  oscillates with the same least 
period then equation ( i. i )  has no finite Fourier series solution. The sole aim 
of this paper is to give a proof of this assertion formalised in Theorem 2 below. 
In the process of achieving this aim we prove Theorem 1 below which esta­
blishes some classes of equations of the form ( i. i )  with no finite Fourier series 
solutions. The paper is an extract from an unpublished paper on equations 
of the form ( i. i )  with finite Fourier series solutions referred to in papers VII,  
V i l i  and IX of this series.

It is well-known that

(1) If there is an interval \ x \  < A  in which (i) g  (x) is continuous, 
(ii) sgn^ (^ ) =  sgn ,x , and (iii) a solution of ( i . i )  with an initial condition in
1 I <  A is unique then the solution of ( i . i )  with a stationary value a >  o 
at t =  o is an even periodic function of i for all a in a certain interval o <  a <  
<  Ai <  A.

Let (|)0 =  (|)0 (/) =  <j>0 (<x , pt) denote the solution just mentioned and let
2 7zp~1 =  2 Tup-1 (oc) denote its least period. The basic question of which this 
paper is â partial answer is this: Is there a set of values a0 of a in o <  a <  A t (*)

(*) Pervenuta all’Accademia il 21 agosto 1979.
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or in o <  a <  00 such th a t (j)0 (a , p f )  is a finite Fourier series whenever a =  a0 ? 
O ur interest in this question (which can stand on its own as a purely analytical 
question) arises from  well-known results in the theory  of non-linear oscillations 
which indicate th a t the num ber of frequencies of a periodic oscillation of a 
perturbation of (1.1) depends on the num ber of frequencies of (J>0 (a , pf ) ,  
and when the latter is infinite so is the former.

§ 2. Since (j)0 is even in t it follows th a t its Fourier series (in its interval 
of periodicity o <  t <  2 Tcp-1) is of the form

<j)0 =  a ( a  ; o )  +  2  a ( a  î mr) c o s  m r P ( a )  t 
r —1

where none of the coefficients a (a ; mr) (r =  1 , 2 , • * •) is identically 0, and 
where the sequence (mr) ( r  =  1 , 2 , • • •) is a strictly ascending sequence of 
positive integers. I t is easy to see th a t if <j>0 is a finite Fourier series of degree w, 
then (j>0 can be put in the form

(2.1) ' § 0 —  F n ( u )  , u  =  cos p t ,

where
n

(2.2) P n ( u )  =  a r u r , a n ^  O ,
r—0

and the coefficients ar == a r (a) are independent of u.
The change of variables from t to u transform s equation (1.1) to

(2.3) p2 (1 —■ u2) x11 ■— p2 ux1 +  g  (x) — O

where x1 =  dxjdu  .
Since <j>0 satisfies (1.1) it follows from (2.3) that

g  (io) =  pa — P2 (1 — «2)

and so it follows from (2.1) th a t

(2-4) g  (*.») r • Q« («)

where
n

(2.5) . =  bn = ^ n z an .
r = 0

T he following Theorem  is im minent.

THEOREM i . I f  subject to (i), (ii) and (iii) of {i°) of § 1 equation (1.1) has 
a finite Fourier series solution of degree n and least period 2 Tip“1 then there exists 
a constant [x >  o such that

(a) x~x g  (x) p.2 as | x  \ 00 i f  n is odd ;
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(b) i f  n is even then either g  (x) is complex as x  —> — co, and x~xg(x) -> pi2 
as x  —> oo or g  (f) is complex as x  -> oo, and x~x g  (x) -> p/2 as x  —> — oo;

(c) pn= = ^

For, if <j>0 is a finite Fourier series of degree n then by (2.1) and (2.4) 
we have

(2.6) x =  Pn (u) , g  (x) =  Qn (u)

which with (2.2) and (2.5) give

xu~n -> an o , g  (x) u~n -> an p2 h2

as I u I — 00 .

§ 3. T h e o r e m  2. I f  subject to (i), (ii) and (iii) of {i°) of § 1 all the solutions 
of equation (1.1) oscillate with the same least period then equation (1.1) has a 

finite Fourier series solution i f  and only i f  g  (x) is linear.

Proof. Suppose that all the hypotheses hold. The hypothesis that all 
the solutions of (1.1) oscillate with the same least period implies, inter alia, 
that sgn g  (x) =  sgn x  in | x  | <  00 and so implies by Theorem 1 (b). that every 
finite Fourier series solution of (1.1) is of odd degree, and by Theorem 1 (a) 
that there is a constant pt, >  o such that x~l g  (x) -> p.2 as | x  | -> 00. Since 
sgn g  0*0 ^  sgn x  in \ x  \ < 00 we have for the least period 2 Tip-1 of >̂0 (a , pt) 
(defined in §1) the formula

(3-0

where

^p—1 ”  I {2 G (a) — 2 G (Ç)}“ 1/2

(3.2) G (a) =  G (a) , <  o and G (x) =  g  (£) dÇ .
ò

If p is independet of a then

a

7rp-1 =  lim I {2 G (a) — 2 G (£)}~1/2 d£ .

Hence, since x rxg{x) -> pt.2 as \x\ -> 00 so that ■ #a-1- * — 1 as a -*•

1
^ -1  =  ^-1 J  (j

-1

00, we have
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that is to say, p =  [x. Substituting p =  u in the equation pn =  p. of Theorem 
I-(c) we get n =  I. Hence in this case we have (cfr. (2.6))

x  — aQ cos [it

g  (x) =  p.2 cos {ji t .

So g  (x) =  (ji2 (x -— a0) and the theorem is established.
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