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Analisi funzionale. — Asymptotic Behavior of Resolvents in 
Banach Spaces. Nota di Simeon R eich, presentata dal Socio 
G. Sansone.

RIASSUNTO. — Si studia il comportamento asintotico di risolventi di operatori accre- 
tivi negli spazi di Banach.

Let E be a Banach space, Ac: E x E  an accretive operator with domain 
D (A) and range R (A), and ] t =  (I +  tA ff1 the resolvent of A. The purpose 
of this paper is to study the asymptotic behavior of ] t as /->oo, and to 
compare it with the asymptotic behavior of the semigroup S generated by 
— A. We denote the closure of a subset D of E by cl (D) , and refer the reader 
to [5] for terms not defined here.

T h e o r e m  i .  Suppose that A c  E x E  is accretive, cl.(T) (A)) is a nonex­
pansive retract of E, and R (I +  rA) => cl (D (A)) fo r  all r >  o. I f  the norm 
of E is uniformly Gâteaux differentiable and the norm of E* is Fréchet differed 
tiabley then fo r each x in cl (D (A)) , the strong lim J t x\t — — v , where v is 
the element of least norm in cl (R (A)). t->oo

Proof. We first show that in an arbitrary Banach space, lim | } t x \t\ ~
£—>00

d  (o , R (A)). Indeed, denoting d  (o , R (A)) by d  and the Yosida approxi­
mation of A by A ty we have, on the one hand, lim inf | A t x  | > d  because

t-> <x>
A t x e R ( A ) .  ;On the other hand, given s > 0 , there is [ j ,^ ] e A  such that 
M  < d  +  e. Since | A t x  | <  | A t x — A ty  | +  | A t y  | <  2 | ^ — y \/t +
. +  |^ |,  lim sup I A t x  I <  d, and the result follows. By [12, Theorem 4.1],

t—> 00

cl (D (A)) is, in fact, a sunny nonexpansive retract of E. Consequently, cl (R (A )) 
has the minimum property by [7, Theorem 1]. Since E* has a Fréchet dif­
ferentiable norm, it now follows that lim A tx  =  v.

t—>- 00

Theorem 1 extends results of Morosanu [2] and Pazy [3] for monotone 
operators in Hilbert space. Their methods are different from ours. It improves 
upon [12, Proposition 5.2] because we no longer assume that E has a Fréchet 
differentiable norm. It certainly applies to all IF spaces, 1 <  p < 00, but it 
does not hold for all Banach spaces: E — I1 and A x  — (xt — 1 yx2— xl9 
x 3-—x2 , • • •) provide us with a counter-example. It is completely analogous

(*) Pervenuta alPAccademia il 2 luglio 1979.
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to the known result for semigroups [7, Theorem 2]. In our case, however, 
we also have lim A0 J t x  =  v, while the analogous result is not true for all

£—>  00

semigroups. Another difference between resolvents and semigroups is brought 
out by our next result.

T h e o r e m  2. Let E be a Banach space each bounded closed convex subset 
of which has the fixed point property fo r  nonexpansive mappings. Let A c  E x E  
be accretive with R (I f  rA) cl (D (A)) for all r  >  o, and assume that 
clD  (A)) is convex. Then A  is zero free i f  and only i f  lim | Jt x  | =  00 for  
each x  in cl (D (A)). *~>0°

Proof. Ifj)/eA “1o, then \ A t x \ < 2 \ x —y\\t> so that \ ] t x\  is bounded. 
Conversely, if {xn =  J tn x} is bounded for some ^ in cl (D (A)) and for some 
sequence tn -> 00 , then \ xn — ]r x n | <  r || A xn || < r \ x  — xn \\tn o. Pick 
a point y  in cl (D (A)), and set R =  lim sup | y  — xn | . The set {ze cl (D (A)) :

n—> 00

lim sup I z — xn I <  R} is non-empty, bounded, closed, convex, and invariant
n-̂ 00

under ]r (cf. [4, Theorem 1]). Therefore it contains a fixed point of Jr , which 
is a zero of A.

Note that if A is w-accretive, there is no need to assume that cl (D (A)) 
is convex (although this is true when E* has a Fréchet differentiable norm).

If indeed o e R (A) , we have the following convergence result (cf. [5, 
Theorem 5.1] and [9, Proposition 4]).

T h e o r e m  3. Let JL be a smooth uniformly convex Banach space with a 
duality map that is weakly sequentially continuous at O, and let A c  E XE be 
an accretive operator such that cl (D (A)) is convex and R (I +  rA) 3  cl (D (A)) 
fo r  all r  >  o. I f  oeR  (A), then the strong lim ] t x  =  Qx fo r each x in c l(D (A))

00

where Q is the unique sunny nonexpansive retraction of cl (D (A)) onto A“1 o.
Again, the analogous result does not hold for all semigroups. Theorem 3 

has already been used in the study of certain explicit and implicit iterative 
methods. See, for example, [11, Theorem 4] and [9, Theorem 1]. These 
methods are defined by

( I ) %n+1 ̂  %n ~~~ h"ïi Pn %n)
and

(2) Xn G Xn+1 n̂+1 ÇAxn+1 -f- p n+1 xn+P)

respectively. Theorems 1 and 2 imply that if o ^ R (A) , then in both cases 
I xn I 00, and p n xn -> — v, where v is the element of least norm in cl (R (A)). 
In contrast with Theorem 1 and 2, we do not know if Theorem 3 is valid for 
U*, I <  p < 00 , p  /  2. (It is valid, of course, for lp , 1 < p  < 00; in fact, 
all smooth Orlicz sequence spaces have duality maps that are weakly sequen­
tially continuous at o).
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Another aspect of the asymptotic behavior of resolvents is obtained when 
one considers the sequence defined inductively by

(3) xn = J t „ xn-l,

where {tfi is a positive sequence. The following result is achieved by combining 
[10, Theorem 3] with [8, Theorems 2 and 3],

T h e o r e m  4. Let A be an m-accretive operator in a Banach space E, and 
suppose that both E and E* are uniformly comvex. Assume that the modulus of 
convexity of E satisfies 8 (e) >; Cer fo r  some r >  2 and C >  o, and that

00

2  tn =  00. I f  {xn} is defined by (3), and v is the element of least norm in
n=l
cl (R (A)), then

(a) lim A0 xn — v ;
n-+ 00

(b) o£  R (A) i f  and only i f  lim | xn | =  00 ;
00

(c) I f  o e R (A) , then the weak lim xn exists and belongs to A-1 o .
n—>oo

Theorem 4 can be applied to , 1 <C p  <00. In contrast with Theorem 3, 
we do not have strong convergence in (c) in general, even in Hilbert space. 
In certain cases, another description of the limit in (c) is possible.

T h e o r e m  5. Let A  be an m-accretive operator in a smooth uniformly convex 
Banach space E with a duality map that is weakly sequentially continuous at o, 
and let {xn} be defined by (3). Assume that oe R (A), and, let P : E ->A“1o 
be the nearest point projection. In  the setting of Theorem 4, the weak 
lim xn — the strong lim Pxn .

n—> 00 n—> 00

Proof. On the one hand, the weak lim x n is the asymptotic center of
n-> 00

{xn} because E satisfies Opial’s Condition. On the other hand, the proof of 
[6, Proposition 2.1] can be used to show that in any uniformly convex space, 
the strong lim Pxn exists and equals the asymptotic center of fix fi. The result

00 *

follows. We also see that in the present case there is no need to assume that 
E* is uniformly convex.

Returning to J t and S (f), we let E and E* be uniformly convex, A c E x E  
an '/^accretive operator, and S the semigroup generated by — A. By Theo­
rem I, lim \ x  — S(f) X \ I \ x  — J t x  I =  I if o $ cl (R (A)) and x e cl (D (A)).

t-> 00
If o e R (A) , # $ A“1 o , tn —>* 00, and ] tnx  converges weakly to then 
06 A_1o and \ x — z | <  lim inf | a;— J tnx \- Also, \x  — S ( ^ ) ^ |<

n-> 00

<  2 ( x  — z I . It follows that lim sup \ x  — S (t) x  | / | x  — fit x  \ <  2. In
t-> 00

Hilbert space this inequality is due to Pazy [3] who used a different argument.
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He also showed that 2 is the best possible constant. (We always have 
\ x — S (t) x  I <  3 I # — ] t x  I). If S satisfies the conclusion of [1, Theorem 4.3] 
(equivalently, lim A°S (f) x  =  v for all ' x  in D (A)) , then we also have, in

£ - > 0 0

case A-1 o 0 , lim inf | x  — S (t) x  | / 1 # — ]t x  | >  J . In addition, the weak
£->00

lim S( f ) x  exists in this case and belongs to A"1o. Also, if A~1o — 0, then
t—) ■ 00

I S (t) x  I —> 00 as t —> 00 for each ^ in cl (D (A)).

Added in proof : We have recently shown that Theorem 1 remains true 
even if cl (D (A)) is not a nonexpansive retract of E, and that Theorem 3 
is valid for all uniformly smooth Banach spaces (hence, in particular, for 
all L p spaces, I <  p < 06). For more details, see our announcement entitled 
“ A solution to a problem on the asymptotic behavior of nonexpansive 
mappings and semigroups ” , Abstracts Amer. Math. Soc., and our paper 
entitled “ Strong convergence theorems for resolvents of accretive operators 
in Banach spaces ”, J. Math. Anal. Appi., to appear.
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