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Fisica m atem atica. — From microscopie to macroscopic reversi­
bility <* (**)>. Nota di A n g e lo  M orro, presentata dal Socio D. G ra ffi.

R ia s s u n to . — Partendo dalla reversibilità microscopica, nella forma delle relazioni 
di Onsager-Casimir per la matrice di autocorrelazione, si perviene ad un preciso enunciato 
di reversibilità macroscopica. Il procedimento seguito applica in un modo non usuale un’idea 
dovuta a Callen e Greene e già utilizzata nella dimostrazione del teorema di dissipazione delle 
fluttuazioni. Come risultato intermedio si mostra che valgono relazioni di reciprocità per fun­
zioni di rilassamento purché le variabili corrispondenti risultino coniugate all’equilibrio.

i .  In t r o d u c t io n

This note deals with the search of a connection between microscopic 
and macroscopic reversibilities. Such a possible connection, besides being 
interesting on its own, is needed for warranting the use of reciprocity relations 
in Continuum Thermodynamics. Indeed, since the famous works by Onsa- 
ger [1] in 1931, the reciprocity relations have been considered extensively in 
the framework of constitutive equations simply by appealing to microscopic 
reversibility.

In a paper by Day [2], appeared in 1971, reciprocity relations are exhi­
bited without having recourse to microscopic reversibility. Precisely, Day 
considered an anisotropic linear viscoelastic material and showed that the 
stress-strain relaxation function G (/) is symmetric for every / in o <  / < 00  
if and only if the work done on every closed path starting from the virgin 
state is invariant under time-reversal. The importance of D ay’s paper is 
that it yields a characteristic condition for the symmetry of G while it is well 
knowri that this result cannot be obtained through compatibility with ther­
modynamics. In fact, as shown by Coleman [3] in his theory of thermody­
namics for materials with memory, the work done by the stress is non-negative 
on every isothermal strain path which starts from an equilibrium state of 
constant strain. As a consequence of this restriction Day [4] proved that 
the instantaneous elastic modulus G (o) and the equilibrium elastic modulus 
G (00) must both he symmetric but [5] G if) need not be symmetric for every 
t  in o <  t  <00.

Subsequently Gurtin [6], in connection with thermo-viscoelasticity, 
introduced a principle of macroscopic reversibility through the invariance 
of the entropy~production under time-reversal. The same invariance assump-

(*) This work was supported by the “ Gruppo Nazionale per la Fisica Matematica ” 
of C.N.R.

(**) Neiia seduta del 14 giugno 1979.



ANGELO Morro, From microscopic to macroscopic reversibility 541

tion has been investigated by Borghesani and myself in some papers concern­
ing linear [7] and non-linear [8] thermo-galvano-magnetic effects and thermo­
viscoelasticity [9].

Such a macroscopic reversibility appeared to be independent of micro­
scopic reversibility. Recently, however, an important bridge has been built 
by Meixner [10] who achieves two principles of macroscopic reversibility 
from microscopic reversibility by translating the problem into the frequency 
domain. Here a further little bridge is built borrowing from a method of 
Callen and Greene used for deriving the fluctuation dissipation theorem [11 ]. 
The resulting procedure turns out to be more direct than the analogous ones 
in the frequency domain. The main result is that reciprocity relations for 
the aftereffect matrices hold provided forces and fluxes (i.e. responses) are 
conjugate variables at equilibrium. Moreover it is shown that the invariance 
of the work under time-reversal considered by Day [2] is a straightforward 
consequence of microscopic reversibility.

2. A n  o u t l in e  of m icro sco pic  r e v e r s ib il it y

The time evolution of a body is examined through a corresponding micro- 
canonical ensemble M whose elements are termed systems. The ensemble 
M is associated with an open subset F  (sample space) of a finite dimensional 
vector space and a probability measure pi defined on F  by a probability den­
sity f  € C1 ( F , R+). So, letting x  e T  stand for the specific value of the state 
variables, for every open subset S c f  we have

y.(3) = j f ( x )  dx
E

dx  being the volume element in 3. The mean value (x) =  x 0 of x e  T  is 
defined by

X0 =  j ' x f ( x )  d x . 
r

Introduce now the distribution function w  of the fluctuation § =  x  — x 0 , 
related to f  by

O' (I) = / ( *  0 +  I) ,

subject to the requirement

(2.1) w  =  0 on dQ

being Q  — F  — x 0. Then we can define the ensemble average of any
two functions <j>, € C1 (Q) in the form

<*+> =  / < K © < K © « ' ( © d f .
Q

(2.2)
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As a function of time, the fluctuation of a system in M is given by a stationary 
stochastic process g e C2 (R , Q) ; the symbol ( t ; | g) denotes the value
of the fluctuation § of a system at time t after the fluctuation of the same 
system had the value Accordingly the autocorrelation m atrix ç> (t) — 
=  {§ (t) § (t +  t))) can be written as

(2.3) ■<>« =  ]  r < T ;  d r .
Q

For later reference, introduce now an assumption whose plausibility is 
widely accepted in the physical literature—see, e.g., [12], Chs. 1,12.

The distribution function w is related to the specific entropy function 
n e C * ( r , R ) b y

w (§) =  const, exp (rt (x0 +  g)/£)

k being the Boltzmann constant.

As a consequence, on defining the generalised forces a by 6 — dr\jdx 
we have

. 9 1 n w

and hence, in view of (2.1), an integration by parts yields

(2.4) <§<?) =  k I =  — k la .
Q

Given a fixed time t , time-reversal relative to t  means the time change 
/ + ' T  — T, t g R .  The corresponding change of the even variables
is E,a (t +  t)  -> (t — t) while that of the odd variables is ^  (t +  d) — 
— ( t — t) . This is summarised by the transformation

(2.5) § (t +  t) -> i  (t +  t) =  s § (t —  t)

g being the diagonal m atrix whose elements are 1 or — 1 according as the 
corresponding variable is even or odd; for example, if ^  is odd then zir — ■— 1 . 
The fundamental result of Onsager and Casimir’s theory is that, in view of 
the invariance of the microscopic equations of motion under time-reversal, 
the autocorrelation matrix is required to satisfy the condition

O-6) (1(0 § (t + t)} = 6 [% (/ + t) § (0) e .

As a final remark, it is worth noticing that in the present paper no appeal 
is made to time averages and hence no assumption is needed about whether 
the ensemble M is ergodic—see, e.g., [13] Ch. 1.
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3. Toward macroscopic reversibility

As a first step along the road to macroscopic reversibility we need a link 
between the microscopic and the macroscopic behaviour of a body. Such 
a link is assumed here in a form due to Callen and Greene [ 11 ].

Upon identifying the state variables x e F  with the response of the body, 
we imagine that the distribution of fluctuations at time t in M is prepared 
via suitable contraints—forces—on each system. Moreover these contraints 
are to be such that each system is in a state of equilibrium. At the time t the 
constraints are lifted and we determine the expectation value ( t  ; | §} by
assuming that the beaviour of a system is given by the (macroscopic) consti­
tutive equation.

To make this point precise denote by o the forces and assume the validity of 
a — drildx at equilibrium, that is when x  and 6 are constant in time. Suppose 
now that the response is given by a linear functional so that we can write

00

(3.1) .  §(*) =  Jo *■(#)+ f  J ( Q * ( t - Q d Z
0

being s  — a  — G0 , tf0 =  (9tq/3x) (x0). Each system undergoes a constant 
constraint, s =  s'  say, up to time t and afterwards s  =  0. Accordingly we 
have

§ (t  +  t )  == j  ( t )  s '
where

00

J( i )  =  i J G )  dÇ.
J

T

Letting §' =  (Jo + j  (o)) s' , (2.6) implies that

(3-2) J  {§' ( j  ( t) »')} ® (§0 à f  =  f s  { ( j  ( t) s') g'} 6 ̂  (§0 d i '  .
a a

Since s'  =  3v)/ag' — o0 and (§ o0) =  0 , (3.2) yields 

(3-3) j  ( t )  = - s j 1 ( t )  e , t  e R + ;

differentiation with respect to t delivers the result

J (T) =  « P  0 )  f . T 6  R+ .

An interesting consequence of (3.3) may be derived as follows. Consider 
the tensor function K, on R+, defined by

K(C) =  JG) , K (o) =  0 .
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In view of (3.3) it follows at once that

(3-4) K ( t) =  «Kt (t)£ ,  t €R+.

Then the response x  m ay be expressed in the form

00

(3-5) * (0  =  K (o o )a (— 00) + |  K(Q<x(f — QdÇ.
0

In connection with the case of constant histories we see that (3.5) is meaning­
ful only if J0 and K (00) exhibit the same behaviour under time-reversal, 
that is

(3-6) Jo =  8 Jo 8 •

Restricting now our attention to finite processes, that is to say <r(— 00) =  
=  G (00) =  0, we have

OO CO

A {o ( • )} — J  G (f) • x  (t) dt — -— j  G (t) • x  (/) dt .
— 00 — OO

Examine now the properties of A against time-reversal. Assuming that g 
behaves like x  under time-reversal, namely

Z(Ç) =  e<r(— Z),

a straightforward calculation yields

A { ö ( . ) } - A { S ( . ) }  =

OO OOOO

=  I 0<XK8 Jo 8 —  Jo) <*(t) dif +  J  j" 0 (i)-(sKT ( t) )  a — K ( t) )  0  (t —  T ) d r d i f .
— 00 — 00 0

As a consequence of (3.4), (3.6) the right hand side vanishes identically. So 
we can state thé following

THEOREM. I f  x  and G are conjugate variables at equilibrium and the response 
functional is linear,

OO

* 00 =  Jo tf (0 +  j  J (T) o ( t  —  t) dT ,
0

microscopic reversibility implies the condition

J (T) =  8 JT (T) 8 > T € R+ .



A ngelo  M orrò, From microscopic to macroscopic reversibility 545

Moreover, i f  the processes (T (•) are fin ite , the microscopic reversibility implies 
the invariance of

6 (f)-x (f) dt

under time-reversal,

* ( • ) - > * ( • )  , =  Ç) , Ç e R .

4. A p p l ic a t io n s  to  c o n t in u u m  t h e r m o d y n a m ic s

The procedure of the previous section shows that the essential assumption 
is the conjugacy property of 6 and x  at equilibrium. This property is now 
examined through the example of the linearised theory of viscoelasticity.

According to various theories of thermodynamics—see, e.g., [14]—the 
stress tensor T and the infinitesimal strain tensor E are related by

- T =  — , at equilibrium,
p 0 9E

p being the mass density and 0 the temperature. So, usually T and E are not 
conjugate variables, but, in the linearised isothermal viscoelasticity — p =  p0, 
0 =  0O—they are conjugate in that the relation

00 00

■* 09 =  E 00 == J  J 0 ) 0“ — T) dT =  f J CO 6 (t — 0>dT
0 0

where 6 =  — T/p0 0O and J ( t) — — J(t) , J  (o) — :— J 0, relates conjugate 
variables. Moreover J/p0 0O plays the role of creep compliance. Then, 
according to the previous theorem, microscopic reversibility implies the 
symmetry of the creep compliance and the invariance of the work

00

w  -  \ T
—  00

in connection with finite processes.
Analogous considerations lead to the symmetry of the relaxation function. 
More in general, further results within the continuum thermodynamics 

follow whenever the conjugacy property is available. Of course the existence 
of conjugacy properties m ay depend on the particular model adopted for the 
body. For example, a proper theory of thermo-viscous fluids with hidden 
variables [15] allows us to derive the heat flux from the entropy function 
while this result does not occur in other theories.
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5. Comments

The above derivation, strongly based on the conjugacy property, leads 
to the invariance of the work under time-reversal in the case of linearised 
isothermal viscoelasticity. So, the characteristic conditions of D ay’s theo­
rem are consequences of microscopic reversibility. At this stage nothing 
can be said about the invariance of the entropy production under time-re­
versal [6-9].

vSome remarks are in order about the present procedure. First, note that 
we have identified the microscopic entropy 7) with the macroscopic entropy. 
Sometimes, instead, the macroscopic entropy—or Gibbsian entropy—is de­
fined as the average value of 73-—see, e.g., [16], § 2.4. However such a dif­
ference is merely formal because we have used the conjugacy property only 
at equilibrium that is to say as if all systems had the same entropy.

A second remark concerns the present procedure versus procedures within 
the frequency domain based on Callen and Greene’s paper itself. It seems 
to thç author that the analysis through Fourier’s components is more cum­
bersome. Moreover Callen and Greene’s procedure, once §(/ +  t) is evaluated 
for t >  o, needs the knowledge of § (t +  t) also for t < 0 .  To this purpose 
it is assumed that § (t +  t) is an even function of t . Besides being not moti­
vated, this assumption appears not to be consistent with the process imagined 
for obtaining the reciprocity relations.
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