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Equazioni differenziali ordinarie. — On the existence of a perio-
dic solution of n-th order nonlinear differential equations. Nota di B,
MEeHRI e H.A. EmaMIRAD, presentata®™ dal Socio G. SANSONE.

R1ASSUNTO. — Gli Autori provano un Teorema di esistenza di una soluzione periodica
di una classe di equazioni differenziali nonlineari ordinarie.

I. In a previous paper with the same title [1], the authors announced
some results concerning the existence of a periodic solution a for certain class
of #-th order non-autonomous nonlinear differential equations. The object
of the paper is to obtain similar results in some different setting.

Consider the following nonlinear 7-th order differential equation
® VL e, 20) = 0 (1)

where f and ¢ are continuous and periodic with respect to # of period «, and

(0]

(2) fe(t)dzzo.

1]

Further, we suppose that all the solutions of (1) with 7 initial conditions are
unique (so it would suffice to take f to be C! in each variabie).

It will be shown that under some conditions on f, there exists at least
one solution of (1) satisfying the periodic boundary conditions

3) 2P 0) =29 (w) , i=o0,1,2, -, n—1.

The method used here is similar to that employed by Lazer [2]. Finally
we give applications in forcing Van der Pol equation and also certain typical
third-order nonlinear equations. The results obtained are in fact a generali-
zation of [3], [4] and [s5].

2. We define the Green’s function of the equation x® = {; with periodic
boundary condition (3) as follows:

n—1

tn
a, - for rx<ft<s<o
= 7n!lw

G () =

n—-1

tn
;6kik+ for o<s<t<aw
—0 AR

(*) Nella seduta del 14 giugno 1979.
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where we have the following relations between the coefficients a; and 4,

(— 1)k gh-1

the relations show that G (¢, 5) is continuous as well as its derivatives up to
the order » — 2. For £= 1, we have

(s) m—1)V(@p1—bpy) =1
which establishes easily
3n—1 an—l
(6) WGU:Z‘_)—‘WG@J‘H:“L
We also need to have
. ok ak
n -51:7G(t,s)|t=0:—atTG(z‘,s)|t=m, E=0,1, -, n—1

thus, (6,, 6, -+, 6,,) ought to be the solution of the following linear system

b+ @by +-- o+ o™, =B
2whby+ +—1) "3, =

...............................

(mn—1)npy =P
where

_ (=i —i st — et

B r—i+1D!lo !

For £ = n —1, the equation (7) leads us again to the relation (5). Thus,
the 2 n coefficients gy, 6; can be determined by 2 # — 1 equations and the
solution always exists.

3. Main Theorem. Assume f satisfies the following conditions
i) For some non-negative real number 6 and for all z¢ [0, w]
X f (%, %5, %,) =0
(8 .
i=1,2,,n
when all x; > 6 or all x; < —46
ii) There exists a constant D, such that
©) 6+3m=<D
where

m = Max{M ,M,(M + E),---, oM, (M + E)}
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~and
M :Max{lf@rxl)"':xn)l;te[()’m]’lxilSD}»

i=1,2, 7%

E =Max{|e(®)],te]o, o]}
Mi=MaX{‘%G(z,s),(t,s)e[O,w]X[O:CO] .

Then equation (1) has at least one solution x (f) satisfying the periodic boun-
dary condition (3).

Progf. Let us consider the following integral equation

(6]

(1) =[G, xS, 2D () —e (9} ds.

o

0
Obviously, the solution of the above integral equation satisfies not only the
periodic boundary conditions (3) but also
A L (22, D) = g (7) +% Fls,2(s), -+, 2D () ds .
6'

In what follows, we shall prove our principal integral equation (10) has a
solution x (#) satisfying

(11) ff(S,x(s),x'(s),---,x("—l)(s))dszo.

Let C¥[o, ®] be the space of all 4-th differentiable. functions on [0, ]

equipped with the following norm
! k

e = 2 Sup | 2D (2) |

n—1
and let B = (H C# [o,w]) xR, with the norm
k=0

|Gy ey 2D, 8 | = || %y + @]

With this definition B is a complete normed linear space.
Now let us define the following operator on B.

T <x’x/’. . .’x(n—l) , d) _— (x-x-’ x'*,. . .’x(n—l)*, a*)
where, for each ¢ =o0,1,2, ", 7z—1

(12) 29* () =a —{—f—ziG (,){f(s,x(s ,-’- o 2D () — e (s)} ds

ot
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and
«

(13) a*:a———(I;Jf(s,x*(s),n-,x‘”‘l)*(s))ds.

0

The operator T is a continuous mapping from B into B. Now, let us define
a closed convex and bounded subset of B as follows

K={x,«,---, 2"V ,2)eB;

”x”kSD ) kZO,I,Z,"',%*——‘I ’ !dl Sé_i—zm}
Now, if we show T has a fixed point in K, then from (13) we can deduce (11),
which ends the proof of our main theorem. In order to prove this fact we
apply Schauder’s fixed point theorem. In fact we have, for (x,x’,-.., x®D,
a)e K L

[x* Ol <|a|+M;E M <é+2m+m<D.
On the other hand if |a| <+ m

%ff(%x*(s),x'*(s),---,x“‘"‘)*(s)ds <M<m
0

which leads to aa*| <& + 2 m.
Now, we consider the two other cases, first 6 +m <a <<b -+ 2m, in
which (12) implies
sup [xO* () —a | < M(E + M) <m

tefo, w)
the above estimate together with & + # a leads to sup x¥* () >4 , € [0, 0]

FQa @), 2% (@), 2 @D*@) =0

for all # € [0, ®w]. Taking (13) into account we obtain & < a* <6 + 2m.
And second — (6 4 2m) < a < — (b + m) with a similar argument we
will have
@, 2@, 2% @), 2 @) <o

for all z€ [0, @], which leads to — (6 4+ 2 m) < a* < — 4, thus in any case
la*| <6 + 2m and therefore T (B)< B.

Finally T is a compact operator, since for any infinite sequence in T (B)
one can extract a convergent subsequence, by remarking that the norm of

the functions
(6]

Vi =[2G 6@ () —e ) ds

0

are bounded for ; =o0,1,2,--+,7 and applying the Ascoli’s lemma.

84, — RENDICONTI 1979, vol. LXVI, fasc. 6.
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4. Applications
In this section, we shall consider some applications of the main theorem
(A1) First consider the forced Van der Pol’s equation
(14) '+ ex' (2 —1) fax =pcosms

where €, @ and u are convienent real positive constants. In order to prove
the existence of a 2—periodic solution for (14), we define the correspondent
Green’s function

. o \2
s——t—7 o<t<s <o
G@#,s)=— \
(O]
(z‘—s—z) ols<t<o

choose 4 =1 in the main theorem and
M = Max {| e’ (+* —1) +-ax| ; | 2| <D, |+’ | <D}
<e(D®*—D) 4 aD
obviously M, = %, M, = 1 and therefore m = eD? — €D + aD + p, thus for -
establishing (9) we ought to have
1 4+ 3(ED*—eD +aD +) <D
which is valid if one takes €, @ and p sufficiently small and D > 1.

(A 2) In the paper [6] Reissig proved the existence of at least one
periodic solution of period « for the equation

(15) e (@) 2"+ KT f () = pp @)

and in [1] authors have obtained the similar result when || p|l=1.
In this regard we can establish the following theorem which is the direct
consequence of the main theorem.

THEOREM 1. Eguation (15) adwmits at least 1-periodic solution if

a) 2@+ 1)=p(#) and fp(z‘)dz‘:o

1)) ¢ (x") is a non-negative bounded C!' function
£) f isaC and xf(x) >0, for all x
) for some D >o
/ (D) | v 4
2 < T
(16) L+ K3 4=~ D =10

where L. is an upper bound of ¢.
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Proof. Here we define the Green’s function as:

LB p 1 s2 s I 52
?”‘7(‘“7) +’(7*7+§) T

for o<z<s<1

b4 22 I 52 s I
6“?(”7)“(7*7*?)

for o<s<r<1

,G(trs>:l

obviously M, == %

, M, = i_g, M, = _;_ and M = (L + K2) D -+ f (D), therefore

I

by taking 6 =o0,m = Y% (L+EKH»D 4+ /(D) + |jwl|). Thus, condition

. (i) of the main theorem will be satisfied if (16) holds and by virtue
of ¢) the condition (i) is also guaranteed

(A 3) An existence theorem for the following equation is studied by -
Reissig {7] and Ezeilo [8]

(17) o) @ 0w, ) =pp ().

The following theorem insures the existence of 1-periodic solution for (17),
assuming somme different conditions

THEOREM 2. Assumption a) and b) of the previous theovem hold on the
Sunctions p and b, furthermore

) $ 4s a non-negative K-bounded C* function

d’y  For some D >o0

F ool 4
C+R+ 5+ =14

e) 0@,x,x',x") is 1-periodic function in t and C* in x,x', 2"

i

cO@,x,a, %) signx® >o0 for all i =0, 1,2 and finally
F=Max{|0@¢,x,2,2")|:|x®|<D,i=0,1,2}.

The proof of the previous theorem can be adapted for this one.
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