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Analisi matematica. — On the non lincar vibrating rod equation ©.
Nota I di Giovann: Prouse ™, presentata 9 dal Socio L. AmERIO.

RIASSUNTO. — Si considera un’equazione non lineare che rappresenta il moto di una
verga vibrante con moto trasversale senza ipotesi sull’ampiezza delle deformazioni e si asso-
cia ad essa una disequazione variazionale. Si enuncia un teorema di esistenza in grande per
la soluzione di tale disequazione soddisfacente a classiche condizioni iniziali ed al contorno.

1. — Let us consider the equation, associated to the transverse motion
of a vibrating rod
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where M denotes the mass of the rod, which we assume homogenous, / its
length in conditions of rest, coinciding with the segment 0 <x <</ of the x
axis, /, </ its proper length, in the absence of constraints; C and K are ela-
stic constants, depending on the physical characteristics of the material.

Equation (1.1) has been obtained in [1] through the study of appro-
priate finite dimensional dynamical systems; we therefore refer to this note
for a more detailed discussion of the nature and significance of the various
terms appearing in (I.1).

The non linearity of (1.1) is due to the fact that no assumptions are
made on the amplitude of the deformations of the rod. If we assume that
1 + (Qufax® ~ 1, then (1.1) reduces to the classical linear equation of the
vibrating rod.

We recall that « (x,#) represents the displacement at the time # of the
point of the rod which in its rest position has coordinate x; moreover, f (x, #)
represents the external force, acting perpendicularly to the x axis.

In what follows we shall assume that the rod is clamped at both ends,
so that the boundary conditions are

3/297{ (3%\2
I

(1.2) w©, ) =u(l,t)— 8”(90") _ w4 o<i<T).
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(*) Lavoro eseguito nell’ambito dell’attivitd del Gruppo Nazionale per I’Analisi Fun-
zionale e le sue Applicazioni del C.N.R.
(**) Istituto di Matematica del Politecnico di Milano.
(***) Nella seduta del 14 giugno 1979.
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We shall, moreover, assign the following initial conditions

u (x,0)

2 =@ 0=x=D).

(1.3) u(x,0) =2

The aim of the present note and of the following one is to prove a global
existence theorem of a function which, according to what will be observed
below, can be assumed to represent a solution of a problem which generalises
that of the vibrating rod.

The study of a global solution of (1.1), (1.2), (1.3) appears to be very
difficult owing to the strong non linearity of the problem and no existence
seems to have been given as yet, even for weak solutions. While, in fact, an
“ energy equation” can easily be established for the eventual solutions of
(1.1), the a priori estimates which can be deduced from it are not sufficient
to ensure the convergence of appropriate approximate solutions.

The problem formulated above in classical terms does not, however,
take into account a fundamental element in the description of the physical
phenomenon of the vibrating rod: the fact that when the stress reaches at

some point a certain value the rod breaks and its motion is therefore no longer
described by (1.1).

From this observation it follows that, for the description of the phenomenon
of the vibrating rod, we can substitute to (1.1) any other relation, provided
this relation coincides with (1.1) during any interval of time o <z <# in
which the stress does not reach a breaking point value at any point of the rod;
for # > # it can also differ from (1.1) because such equation does not, any-
way, interpret the problem under consideration. As we shall see, a relation
which satisfies the conditions given above is represented by a variational
inequality. '

A rod will break at a point ¥ and at a time f if, denoting by T the tension,
by M the bending moment and by 7 the shear stress, one, at least, of the fol-
lowing conditions is verified

(14 |T@,H|=Ny , |ME,H| =N , |=@&,H|Ns,

where Nj , N, , N4 are constants depending on the material. Bearing in mind
that the motion is transversal, that © = — dM/3s and assuming that the laws
of Hooke and Euler hold, relations (1.4) become
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Let N{', N, , N5 be appropriate constants (depending on N1, Ng, Né);
it can easily be shown that, if one, at least, of the relations

ou (%, §)
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(1.6)

Szu(ii,t)‘ZN

holds at the point (Z, ), then necessarily one at least of (1.5) holds at the
same point and consequently the rod breaks. It appears therefore natural
to take into account (1.6) when studying the problem of the vibrating rod.

More precisely, equation (1.1) may have a physical interpretation only pro-
vided that

Ru
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2. — We now introduce an equation which generalises (1.1) and which
we shall therefore consider in the sequel in place of (1.1). Observe that the
Hamiltonian function associated to (1.1) has the form

l

e o= ([ () - (@) - (e ()]

with

(22) H(n)=‘f FOAE . G = fg@da

and

ey ro=iri— B Er L s0=) A aree

Hence, if we neglect (2.3) and assume that % (£),g (§) are arbitrary
continuous functions with ge C', from the Hamiltonian (2.1) we decuce the
equation

w e

. du) Pu 2 du acp) _
g(a) P 5;(g (%)5; +f‘P] drdr=o

where ¢ (x, #) is an arbitrary function with

o, )=0@, ) =00,)=9(,)=¢,0,5)=9,(,8) =o0.
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Equation (2.4) represents the variational formulation of the equation

2y ) du du\ 2 du) Pu
@5 a "_a?}l( ) + 5 [ (a) 3 (é’ (3’;) I )] —/=o
which, when (2.3) hold, reduces to (1.1).
For the sake of generality, we shall, from now on, consider (2.5) in place
of (1.1), associating to it the initial and boundary conditions (1.2) and (1.3)

and the limitations (1.7); the corresponding problem will be called the genera-
lised vibrating vod problem.

3. — Let us now construct an inequality which, according to what has
been said in the preceding paragraphs, can be associated to the generalised
vibrating rod problem.

Let K be the convex set

Ry
ox?

v
o

3.) K= {v@eCl(o,T;H"™): <N, |, <N,
(3.1)

By
8

14

<N; ae in Q= (0,1)><(0,T):

and denote by K, its closure in H' (o, T ; L?®) ®; it is, obviously,

1’ Ro P
63 K= fowe C |2 e
B .
v <Nj; ae. in Q} .
Setting
) ou ou\ 2 ) Pu
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assuming that #(f)e K, L2 (0, T;Hp), —— e L2(Q),Aue L*(Q) and

denoting by ¢ any function € K, With—e:i*eL2 (Q), we consider the
inequality

(3.4 | (S au—r) (2~ ) a0,z

Q
Q,=(,)x(,t),0o <t <T).

(1) From now on‘ we shall write »(f) = {u(x,?);xe(0, l)} [2=12%(0,/), H* =
He(o,17).



506 Lincei - Rend. Sc. fis. mat. e nat. — Vol. LXVI — giugno 1979

It is well known that, if (1.7) hold in an open set Q' < Q, then

(3-5)

aﬂ —I—Au—f—o ae. in Q.

Hence, it is natural, by what has been previously o-bserved, to associate to the
generalised vibrating rod problem the inequality (3.4) with the initial conditions
(1.3) (the boundary conditions are. accounted for by the assumptlon that
u(@el2(o,T;Hy).

Let us noW give a weak formulation of (3.4). Observe, to begin with,
that, setting

v ="CD e Du=[20e0,1),
we have, bearing in mind‘ (1.3),
(3.6) ( (" +Awu,u)adny =1 d @i +

+ (H Du (¢, D1z + 311G ©u @) Il —
— 3l & lfe — (H Dzo) , e — 31| G Do) 12 -
Moreover, vyeL’(o,T;Hp,

G [, s an =

= f [(2 (D7), D)re + (g D#) D* %, D (g (Do) DY))re] dy = fa (e, §) dn

0

Substituting (3.6), (3.7) into (3.4) we obtain, assuming that ¢ () e K,,
o @) el2(o,T;HY, 9" (#el2(o,T;L?,

68 — 31w Ol —E Ou), e — 3G Du@) o+ 0,9 O +
B f (o e, ) — 0 ¢ — (£, — sl dy =

— 3z lfe — (H (Dz) , e — 3G Dzg) |l + (21, ¢ (O))r2 -

We shall then say that « (¢) is a weak solution in [o T] of (3.4), (1.2),
(1.3) if:
d) u@)e KgNL?(0,T;Hy), #(0) =z;

8w (f) satisfies (3.8) a.e. in [0, T Vo () € Kowith o' () € L*(0,T ; Hy),
" (Hel2(,T;L¥. -
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In the subsequent note II we shall prove the following theorem.
THEOREM 1. — Assume that:
@ f@Oel?(,T;L%;

() zoe HoNH*®, with | Dz, | <Ni', | D%z, | < Ny, [ D’z | <Ny’
ae. in (0,0);5nel?

@Gid) h(E)eCl(—o0,00),g(E)eCl(—co,00) and there exist two
positive constants, M' and ¢, such that

M S H @), 0w +HIGEW < ol VoeH;.

Then there exists at least one function w (f) satisfying a"), &").

OBSERVATION 1. — Let K be a convex set defined by

¢
(3.9) K = {v<z>ec°(o,’r;H3'°°):‘f%dn+Dy(o) <Ny,
0

<Ny,

+D3w(0)| <Nj ae. inQ

U "0y - Do o)

and denote by K, the closure of K in L2(0, T ; L2) Let, moreover, 7, € Hp,
with | Dz | < N7\ [ D22 | < Nz , | D3uy| <Ng' . Then, V«(¢) such that
u (0) =g,

(3.10) u()e Kyesu' ) eK,.
Observe, in fact, that, by the definitions given, it is obviously, if
% (0) = u,,
(3.11) u()eKe=su (e K.
Let now = (£)€ Ky, # (0) = u, and {u, (#)} be a sequencé such that

(3.12) u, (e K , nlgzloun @Hl(?r;m)% &, u, (0) = 1.

We have then, by (3.11), 2%y, (Z‘)Gf{ and, obviously,

(3.13) lim un() @ . .

”in> 00 LT
Hence, by (3.13), #' (¢) € K, and we have therefore proved that, if % (0) = u,,
(3.14) u(@)eK, =o' ek,
Assume now that 2’ ()€ K,, 2 (0) = #, and let {x, (¥)} be a sequence
such that

(3.16) un ()€ Ky hmun() u (), u,(0) = u,

L2 TL2)
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By (3.11) we have #, (¢) € K and, moreover, by (3.15).

(3.17) lim %, (t)H 1y @ .

n—> o0
Hence = (Y)e K,, which proves that, if « (0) = #,,
w@®eR,=2u@®ekK,.
OBSERVATION 2. — By what has been proved in observation 1, in the defi-

nition of weak solution, condition a’) can be substituted by the following:

" @) u(@el?®,T;H),u (e Ko, % (0) = z,, with z, sa?z’.gfyz’ng con-
dition (ii) of Theorem I.
OBSERVATION 3. — Condition (iii) of Theorem 1 is verified if the functions

%2 (E),g (£) are defined by (2.3), i.e. when (2.5) reduces to the equation (1.1)
of the vibrating rod. In this case, denoting by ¢ the embedding constant of

H? in H} hoose M’ — S50 =2+ Re)
o 1n Hp, we may c = M , [_ZM Ge) .
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