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SEZIONE 1

(Matematica, meccanica, astronomia, geodesia e geofisica)

Matematica. — On the argument principle in multidimensional
complex manifolds . Nota di Guipo LupaccioLu, presentata ¢
dal Socio E. MARTINELLI.

RIASSUNTO. —Si da un’estensione del classico teorema dell'indicatore logaritmico
(*“ argument principle ) al caso in cui 'ambiente sia una varieta complessa multidimensio-
nale e in particolare kihleriana. :

§1.

In the p}esent work we shall be concerned with holomorphic mappings
from a complex manifold X of complex dimension # mto a complex space
Cr | p being an integer such that 1 < p <#n.

For each such mapping f, = (f*,--+,/?) : X — C?, not identically zero,
we denote by Zg, the zero set of f1,---, /7 and by @y ,_1 (f,) the Martinelli
form associated with f,, that is:

o1 (fp) = (‘ZZZ 2)3 (PO e de

/\df”/\E( n*tdft A --'_F“Jf%-/\dfp.

(*) Lavoro eseguito dall’Autore come bor51sta del C.N.R.
(**) Nella seduta del 12 maggio 1979.

21. — RENDICONTI 1979, vol. LXVI, fasc. 5.



324 Lincei - Rend. -Sc. fis. mat. e nat. — Vol. LXVI - maggio 1979

This form is smooth and closed outside Z;,, where it becomes singular.

The present paper deals with an extension to f,, by means of wgp p_1) (f,),
of the classical argument principle for a function of one complex variable
(see [1], p. 151).

The case p = n is merely a generalization of the well known Martinelli
integral formula and has already been considered (see [6], chap. II due to
E. Martinelli, where one can find also a survey of B. Segre’s and Cacciop-
poli’s contributions about related subjects). The only assumption in this case
is that Z;, must contain at most isolated points. Then the extension of the
argument principle to f, is given by the formula:

(1.1) f @01 (S = ZZODV @ e,

) =

where D is a relatively compact open domain in X, whose boundary 3D is
almost regular @ and does not intersect Zy, , ¢ is any holomorphic function
in X and v (¢) means the multiplicity of 2 as a common zero of f/*,-. -, /* (i.e.
as intersection of the analytic varieties f* = o0,---,f* = 0 in X). Moreover
3D is given the orientation induced by the canonical orientation of D (recall
that locally, at a point xe D where x* = 2% - 42"’ = 1,... 1%, are com-
plex coordinates, this orientation is given by the differential form dx' Adxt' A

- Adx? Adan""). We do not dwell here upon the proof of the above formula;
for this see [6]®.

Now let us consider the case that 1 < p <z — 1. Then the assumption
on f, is that it must be regular at the generic point of Zs;,. More precisely,
if Cy, is the critical set of f, (i.e. the set of the points of X where the differentials
dft,---,df? are linearly dependent), the following must hold:

(¢) The analytic set Zg, N Cs, has complex dimension <7n—p—1
at each point.

This implies that Zg, is the topolog1ca1 closure of a complex manifold
Z of complex dimension 7 — p @, Z; is the set of the points of Zg, where f,
is regular pr = ZfP\CIP Therefore if D is any relatively compact open
domain in X, the integral of a continuous 2 (# — p)—~form in X over Zs, 1 D
may be defined as the integral over pr N D. That this is convergent follows
from known results about integration of forms over analytic sets (see [5]).
We assume furthermore that the boundary 8D of D be almost regular and
satisfy the following condition:

(¢2) The set Zg, N1 2D has zero measure in Zyg, .

(1) For a definition see [2], p. 421.

(2) In this book a different agreement is made about orientations so that on the left
side of the formula (1.1) there might be a difference about sign.

(3): We are assuming that Zg, is not empty; otherwise the treatment would be trivial.
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Then the extension of f, to the argument principle is given by the fol-
lowing:

THEOREM. Under the assumptions (2), (4) the following formula is valid:

(1 .2) [w(p,p—l) (fp) ANPu—pn—p = f‘P(n—-z?,n—p) ’

3D z,AD

where Qu_pm_p 15 any bihomogeneous smooth d-closed form in X of bidegree

Note that the 3-closed form @u_p,n—p replaces here in a natural way the
holomorphic function ¢ = e, of (1,1), as well as the integral on the right
side of (1.2) is a obvious modification of the sum on the right side of (1.1).

Assume, in particular, that X may be given a Kdhler metric, with Kahler
form Q. It is known that the exterior power Q"2 of  yields the multiple
by (7~ p)! of the volume element for the submanifolds of X of complex
dimension # — p, with respect to the Riemannian metric associated with
the given Kihler metric (see [3], p. 143). Therefore, if in (1.2) we choose
as Pu_p,n—p the form 1/(n — p)! QP we get:

COROLLARY 1. If (X', Q) is a Kihler manifold and f,, D satisfy the con-
ditions (2) , (¢7), the following formula is valid:

(1:3) —(h_—iTﬁ' f -1 (fp) A Q7P = Vol (Zs, N D),
"D
where Vol = (2 n — 2 p)-volume.

Let us consider the case when X is an open subset of C"(a!,... x%)
and Q is the standard Kihler form, that is:

. on
Q=213 dat A dat.
4 h=1

Then we get:

n—p :
dxhl/\ dz FAREAN dxhn—P/\ dﬁhn—p’

Qv — (1 — p)! (%)

and hence:

1< <5 <hyp<n

COROLLARY I1. If X is an open subset of C* and f,,D satisfy the conditions
(@), (#2) , the following formula is valid:

.\ n—=p
4 (7) [ovsnUh T AP Addnr o=

1<k < - <hyp<n
5D 1 n—p

= Vol (Z, 1 D).
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For p = 1 this formula has already been considered by W. Wirtinger
(see [7) @ .

§ 2.

In this § we give a proof of the formula (1.2) under a hypothesis on the
mapping f, stronger than (7). We assume that each point of Zs, be a regular
point for f,, that is:

" Zs, NCp, =0 .

In § 3 we shall extend the validity of the formula (1.2) to the case of the
weaker assumption (7).

First of all observe that the integral on the left side of (1.2) must be re-
garded as an improper integral, whose singular set is

T =Z;, 03D .

Therefore it must be evaluated as the limit of the integral

(2.1) [

Op,p-1) (Fp) A Po—p,n—n
D\ Tl7]

as » > oo, {T'"}, ;1 ... being a fundamental sequence of open neighbour-
hoods of T in 3D. Such a sequence can be easily found by means of the
function

| ol = (A Pt f )" X > R

Since f, is regular at each point of Zg, (due to (")), its image f, (X)= C?
contains an open neighbourhood of the origin ®. Hence the image | f,|(X) = R*
of |f,| contains an open neighbourhood of o in R*. Moreover Sard’s theorem ©®
yields that “ almost all 7 points of the latter are regular values of | f,|. It
follows that we can find a decreasing sequence of regular values of | f, |, say
{er}r=0,1,... which converges to 0 and whose first term ¢, is as small as we
please. Then set for each »:

X[T]:{xéX:If“(x)Ss,}.

(4) In this paper the author assumes the function jf; = f meromorphic. Then on the
right side of the formula there is the difference Vol (Z; nD) — Vol (P;nD), where P; is
the polar set of /. However for p = 1 the extension from the holomorphic to the meromorphic
case can be easily achieved as a consequence of Cousin’s theorem (see [6], p. 126).

(5) This is true even if f, is regular only at some points of Zf, and hence under the
assumption (7).

(6) See [4], p. 10.
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It follows from the implicit function theorem that X is a 2 7-dimen-
sional manifold with boundary regularly embedded in X. Let us denote the
boundary by Z!":

M ={xeX:| f|(x)=¢}.
Now set for each 7:
T — X 0 5D
Next consider for each » the set:
DT = DN\ X1,

If ¢o is small enough, as we assume, D! is a relatively compact open
domain in X with almost regular boundary given by:

DM = DN\ TN y (— 2z n Dy,

where the union is disjoint and the negative sign before Z"} means that the
boundary of X! must be taken here with the orientation opposite to the
canonical one. ‘

Since D! does not intersect Zy,, the form g p_1) (fp) A Pn—p,n-p 1S
not singular there. It is also closed, because g ,_1) (fy) is closed and @u_p, n—p)
3-closed, whence:

d (0@,p-1) (fp) A Per—p,n-p) = (— I>2p_1 Op,p-1) (Sp) N\ ¥Pm—p,n—p) »

and the form at the right side has bidegree ( + 1, 72— 1) and therefore is
zero. It follows from Stokes’ theorem applied to D that:

~

(2.2) 0@,p-1) (fp) A Pu—pn—p = f p,p-1) (fp) A Po—p,n—p) -
Nk Z[*lAD

Now recall the assumption (¢"). Since D is compact, if ¢, is small enough,

as we assume, we can find relatively compact open sets U;,--., Uy in X
such that:
N :
() z[°lnchU=kUU,,,
=1
(b) For each £#=1,---, N there exist » — p holomorphic functions
in Uz, gk, -, &7 ", such that the mapping

flc:(fl:"':fp;g;»;":gz_p):Uk—’fk(Uk)C Cn

is a local coordinate system on X.
N

Therefore, if we consider a smooth partition of unity on U, ; Yr=1,
: =1

such that supp vz = U, we may replace the integral on the right side of (2.2)
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N
by the sum kZﬂ’,[f], where
=1

—1%
(2-3) T = ] i (01 (F) AYi Popnn) -
e3(UnZND)

Hence, to conclude the proof, we have to show that I tends to the
limit

(2.4) Ty = J 521* (Y& Pr—p.n—m)
c4(UzNZg,ND)
as 7 —> 0o,
First note that:
—1

*
¢, O@.p-1) (fp) = Qp,p-1) (x’ PAS) xp)-

Moreover, if E denotes the linear subspace of C” represented by the equa-
tions x1 = - -= 2? = 0 and E!" the hypersurface represented by the equation
ZYEL feee b AP TP = ¢ then:

(Ui N Zy O D) = ¢, (U, N DYD E, (U 0 ZF N D) = ¢, (U, 0 D) 0 EFL,

Therefore, setting

= ;" (Y& Pou-pinp)) in ¢, (U0 D),

Ll’k(n—zv,nazv)
[ =0 in €™\ (U0 D),
we get:
.
(2.5) ‘9—/[;] 2_} w1 @, A V—pnmy » Tk = {‘I"k(n—p,n—p) .
Elr] E

Now observe that EU! may be regarded as the product Se, X E, where
Se, is the (2 p — 1)-sphere with center at the origin and radius ¢, in the linear
subspace of C" represented by the equations x?*! =...= 4? = 0. Therefore,

if S denotes the unit sphere in this subspace, we may perform the change of
variables

Gy (xly" ,’xn> H(E,.XI, ) grxp’xp-}—] :"'7xn>
and replace EM by SXE in T Since the form O, p-1) (X, -+, 2P) is

invariant under this change of variables, we get:

) T = [ G+ DN riapinn-
SxE
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Now let us show that:

. *
lim o7 Ykn—p,n-» = Yer-p,n-n | E @
r—>00
almost everywhere on S XE', uniformly on the compact subsets where the
limit exists. As a consequence we shall be allowed to evaluate the limit of
T when » — co under the sign of integration, getting:

>

: Ir \ /
lim yk] - ‘ Op,p-1) (xl PR xp)/\‘\‘l’k(n—p,n—p) I E> .

r—>00 J
SxE

N
_l\)

~J

~—

Consider the set E, = E 0 ¢; (supp v; N 3D). It follows from the assump-
tion (¢2) that E, has zero measure in E. Hence S XE, has zero measure in
SxE. For each = = (x!,---, 2" in SXE\S XE, consider the projection
x = (0, -+,0,xPr ... x" of x onto E. Let 3 (x) be the distance of x’ from
¢ (supp v N 3D). This is positive because x"¢ Eq and ¢ (supp v 0 dD) is
compact. Therefore there exists an integer r, such that ¢, << 3 (x) for »>7,
and consequently o, (x) ¢ ¢; (supp v; N D). Since the form pup_pn_p is
continuous outside < (supp vy N 2D), it follows that y Vkn—pn—p 1S conti-

nuous at the point x for » > r,. Therefore the limit lim cfxpk(n_p,n_p) exists
r—>0o0

at each point xS XEN\ S XE, and may be obtained by replacing ¢, by o in
6y Ubtnepm—p, Which obviously yields the form $rp_pn_pn | E.
Moreover that this limit is uniform on compact subsets of S XE\S xE,
follows easily from the fact that the function 3 is continuous and positive.
Finally consider the integral on the right side of (2.7). It may be com-
puted as the product of the two integrals

$

Since the first is 1 ®, the proof is completed.

§ 3.

Now assume that f, satisfy the condition (¢), but not the stronger con-
dition (7").

As we have already noticed (see § 2, footnote s5). the image f, (X)c C?
of f, contains an open neighbourhocod of the origin, say I. Then let I’ denote

(7) Obviously the restriction of {km—p,n—p) to E is obtained by putting o instead of
ah, 7z, dah, dz* for = 1,---, p, and may be regarded as a form on the whole C™
, (8) To see this write the formula (1.1) for =5 ,X = CP,f,= (1,00 ,2P) 0 =1
D = S. '

3
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the set of critical values of f, in I and I the set of those regular values
A=, -+, in I for which Zs,—3 03D has not zero measure in Zg, ;.
It follows from Sard’s theorem that I’ has zero measure, and it can te shown
that the same is true for 1"/, although we do not linger over this point. Hence
the set J = I'\((I' U 1"’} is everywhere dense in I, so that we can find a
sequence {A¥1},_,, . of points of ] converging to the origin as s - oco.
Then set for each s:

ZES]': fp . 2.[8] .

Since fJ*! satisfies the conditions (i), (%), the formula (1.2) is valid for
1 as we have proved in § 2. Hence, taking the limit as s — oo, it follows
that this is valid also for f,.
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