ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

MARCO FRANZINI, MIRELLA TROYSI

L'effetto del ritiro elastico dell'impronta nelle misure di microdurezza Vickers e Knoop. I. I dati sperimentali

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **66** (1979), n.4, p. 263–268.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1979_8_66_4_263_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1979.

SEZIONE II

(Fisica, chimica, geologia, paleontologia e mineralogia)

Mineralogia. — L'effetto del ritiro elastico dell'impronta nelle misure di microdurezza Vickers e Knoop. I. I dati sperimentali. Nota di MARCO FRANZINI^{(*)(**)} e MIRELLA TROYSI^(*), presentata^(***) dal Socio G. CAROBBI.

SUMMARY. — Knoop and Vickers micro-indentation hardness numbers, measured on 11 specimens with seven different loads between 15 and 500 grams, are reported. Details on the instrumental conditions are given.

I. INTRODUZIONE

La successione di fenomeni, che presiedono alla formazione di un'impronta nelle prove di microdurezza alla penetrazione, è illustrata secondo una chiara schematizzazione da F. Gottardi [1]. Nella descrizione di questo autore si rileva un aspetto – cioè la presenza di una deformazione elastica del mezzo – che deve essere tenuto presente nell'analisi delle misure di microdurezza perchè responsabile di molteplici fenomeni, particolarmente vistosi nelle impronte prodotte su monocristalli.

Sono proprio le impronte ottenute su monocristalli che, risultando deformate rispetto alla forma teorica dipendente dal tipo di punta impiegata, garantiscono l'esistenza di forze elastiche residue, le quali, dopo il sollevamento della punta di diamante, concorrono a modificare l'aspetto dell'impronta riducendone le dimensioni (ritiro elastico).

Nel 1939 F. Knoop *et al.* [2], in un ampio lavoro sperimentale, hanno messo in chiara evidenza la sostanziale differenza fra le dimensioni dell'impronta nel momento in cui il peso è applicato (« unrecovered dimensions ») e le dimensioni dell'impronta (« recovered dimensions »), quali sono misurabili dopo ritiro della punta di diamante.

Ritenendo più corretto esprimere la durezza come rapporto fra carico e « unrecovered dimensions » dell'impronta, F. Knoop *et al.* [2], dopo aver provato numerose forme, suggeriscono l'uso di un penetratore a forma di piramide rombica. Tale penetratore, noto come piramide Knoop, darebbe secondo gli AA., impronte prive di ritiro elastico. Nel seguito sarà mostrato che anche i dati originali di Knoop risentono di effetti di ritiro, sensibili soprattutto a bassi carichi.

L'influenza del ritiro elastico sulle misure di microdurezza è stata valutata, sul piano fenomenologico, nei lavori di M. Franzini [3], M. Franzini, M. Troysi

(*) Istituto di Mineralogia e Petrografia dell'Università di Pisa.

(**) Centro di Geologia Strutturale e Dinamica dell'Appennino – C.N.R. – Pisa. (***) Nella seduta del 21 aprile 1979. [4]; in questi è mostrato come, assumendo un ipotetico ritiro elastico indipendente dal carico con il quale la misura è stata effettuata, sia possibile rendere confrontabili misure eseguite con carichi diversi ed anche calcolare un valore di durezza estrapolato, che può essere assunto come macrodurezza.

Scopo di questa nota e della successiva (M. Franzini, M. Troysi [4]) è analizzare gli effetti del ritiro elastico su impronte Vickers e Knoop, dimostrare che – nei limiti degli errori di misura realizzati nelle prove sperimentali – i soli fenomeni di ritiro elastico sono sufficienti a spiegare la dipendenza della microdurezza dal carico, valutare quantitativamente il «ritiro elastico» e mostrare inoltre che i valori estrapolati di microdurezza Vickers e Knoop, misurati su di uno stesso materiale, sono uguali.

In particolare nella presente nota sono descritti gli accorgimenti utilizzati per la più corretta raccolta dei dati sperimentali e sono riportati i valori di microdurezza Vickers e Knoop misurati su undici diversi campioni.

2. LA DUREZZA ALLA PENETRAZIONE

Negli ultimi 50 anni la misura della durezza alla penetrazione si è sviluppata proponendo nuove forme di penetratori (si veda per una descrizione F. Knoop *et al.* [2]) ed estendendo l'intervallo dei pesi di carico sul penetratore da pochi grammi (« microdurezza » alla penetrazione) a parecchi chilogrammi (« macrodurezza » alla penetrazione).

Il diffondersi delle misure, sia in ricerche di base sia in ricerche applicative, ha portato a constatare che i valori di microdurrezza e di macrodurezza non sono tra loro confrontabili e che, inoltre, i valori di microdurezza sono funzione del carico applicato.

Nelle misure di microdurezza sono comunemente utilizzati due diversi penetratori, noti come piramide Vickers e piramide Knoop, ognuno dei quali ha uno specifico campo di applicazione. L'uso di due diversi penetratori introduce nelle misure di microdurezza l'ulteriore difficoltà che in generale $HVp \neq HKp$.

Il valore HVp, espresso in Kg/mm², viene calcolato come rapporto fra il carico e la superficie laterale dell'impronta (K = 1854.4), mentre il valore HKp viene calcolato come rapporto fra il carico e la superficie dell'impronta proiettata sul piano di misura (K = 14230). Dato che i valori di microdurezza vengono comunemente espressi con una unità di misura (Kg/mm²) che ha le dimensioni di una pressione, sembrerebbe logico che si facesse riferimento al rapporto fra carico e superficie proiettata dell'impronta (K = 2000 per impronte Vickers).

Considerando le tradizioni consolidate dall'uso, anche se nella letteratura non compare alcuna motivazione giustificata di questa scelta, non si ritiene opportuno modificare i valori delle costanti K utilizzate nel calcolo di HV e HK.

3. METODI SPERIMENTALI

Sono stati scelti, per le misure 11 campioni dalle caratteristiche molto differenti (Tabella I).

La lucidatura dei campioni, quando necessaria, è stata eseguita su panno rotante con pasta diamantata.

TABELLA I.

Elenco dei campioni esaminati.

CAMPIONE	
Acciaio n. 2	Acciaio di taratura per microdurezza N.MPA.3716077
Acciaio n. 1	Acciaio di taratura per microdurezza N.MPA.465064
Meteorite	Frammento di meteorite di Bagnone [6] – Orientazione non definita – Impronte Knoop fortemente asimmetriche.
Blenda	Carrara (Italia), cava di Fantiscritti – Faccia (111).
Fluorite	Congeac (Francia) – Faccia (111).
Ottone	Ottone laminato commerciale, spessore 1 cm.
Alluminio	Tondino commerciale, diametro 4 cm.
Rame	Rame laminato commerciale, spessore 1 cm.
Galena	Miniera del Bottino (Italia). Camp. 38/25 – Museo di Mineralogia, Univ. Pisa – Faccia (111).
Magnesio	Tondino commerciale, diametro 4 cm.
Stagno	Stagno vergine commerciale in lingotto.

Tutte le misure sono state eseguite con un microdurimetro «Durimet» Leitz. Il reticolo micrometrico oculare è stato tarato con un micrometro oggetto a riflessione.

La perpendicolarità fra superficie misurata e asse della punta di diamante è assicurata controllando la permanenza della messa a fuoco su tutta la superficie del campione per traslazione dal tavolino del microdurimetro. I pesi reali di carico sulla punta di diamante, rispetto a quelli teorici di taratura dello strumento, sono dati nella Tabella II. Nel corso di questa nota i calcoli sono stati eseguiti con i pesi reali misurati anche se, per comodità, questi verranno indicati nelle tabelle successive con i loro teorici valori interi.

TABELLA II.

Pesi applicati nelle varie prove.

Pesi (g) di carico sulla punta di diamante						
Teorici	Reali	Teorici	Reali			
15	15.20	200	200.163			
25	25.205	300	300.29			
50	50.186	500	500.35			
100	100.335	— .				

I tempi di discesa della punta e di permanenza sul campione sono stati tarati ambedue su 15 secondi.

Sono stati utilizzati due differenti penetratori (K 3930, V 3558) che, misurati ad un goniometro ottico a due cerchi, hanno dato i risultati della Tabella III. Nel corso dei calcoli sono stati utilizzati i valori K = 14116 e K = 1853.1.

TABELLA III.

Misure al goniometro ottico e caratteristiche geometriche delle piramidi utilizzate.

Piramide K 3930				Piramide V 3658				
٩	φ	angoli fra gli spigoli	ĸ	م	ų	angolo fra le facce	к	
25° 08' 25° 14' 25° 14' 25° 14'	0° 00' 16° 13' 178° 52' 195° 04'	172.41° 130.04°	14116	22° 06' 22° 06' 22° 06' 22° 06'	0° 00' 90° 12' 180° 05' 270° 01'	135.8°	1853.1	

TABELLA IV.

Microdurezza Vickers per carichi compresi fra 15 (g) e 500 (g).

		15	25	50	100	200	300	500
Acciaio 2	d	6.59	8.62	12.31	17.53	25.30	31.08	40.31
	HV	649	629	614	605	579	576	571
	HVC	543.6	548.4	557.3	565.1	552.6	554.2	553.8
Acciaio l	d	7.15	9.214	13.238	18.85	26.763	32.85	42.5
	HV	551	550	531	523	518	516	513
	HVC	500.8	510.7	503.7	504.4	504.6	504.9	505.0
Meteorite	d	8.686	11.388	16.286	23.242	33.029	40.543	53.525
	HV	373	360	351	344	340	339	324
	HVC	310.86	312.73	317.34	320.79	323.49	325.05	313.80
Blenda	d	11.143	14.488	20.488	29.425	43.063	54.388	71.238
	HV	227	223	222	215	200	188	183
	HVC	155.53	165.44	178.86	184.56	180.14	173.07	171.39
Fluorite	d	11.87	15.386	22.086	32.083	45.15	56.013	73.1
	HV	200	197	191	181	182	177	174
	HVC	163.77	168.87	170.85	167.39	172.32	169.73	167.75
Ottone	d	11.925	15.914	23.243	33.56	48.857	59.575	76.81
	HV	198	184	172	165	155	157	157
	HVC	151.73	150.55	149.48	149.55	145.12	148.21	150.43
Alluminio	d	15.267	20.217	28.257	40.875	57.857	70.233	91.25
	HV	121	114	116	111	111	113	111
	HVC	112.66	108.36	112.11	108.38	108.75	111.08	110.04
Rame	d	16.257	20.883	29.8	43.05	59.15	72.129	94.271
	HV	107	107	105	100	106	107	104
	HVC	107.01	107.44	104.95	100.48	106.14	107.05	104.40
Galena	d HV HVC	20.313 68.3 59.74	26.338 67.3 60.70	36.90 68.3 63.39	53.45 65.08 61.80	76.55 63.30 61.04	93.729 63.34 61.09	
Magnesio	d	21.543	28.457	41.414	59.898	86.05	111.07	149.66
	HV	60.7	57.7	54.2	51.8	50.1	45.1	41.4
	HVC	34.03	36.68	39.31	41.27	42.63	39.76	37.67
Stagno	d HV HVC	38.35 19.2 7.964	52.1 17.2 8.712	78.371 15.1 9.395	127.463 11.4 8.422	186.213 10.7 8.629		

Nelle Tabella IV e V sono riportati i dati misurati. Nelle colonne da 2 a 8 sono riportati, per ogni materiale, i valori in µm della media di almeno quattro misure indipendenti Vickers (d) o Knoop (l), del relativo valore di microdurezza (HV o HK), del valore di microdurezza calcolato (HVC o HKC) dopo aver apportato una correzione per il ritiro elastico secondo quanto verrà illustrato nella nota di M. Franzini, M. Troysi [5].

TABELLA V.

		15	25	50	100	200	300	500
Acciaio 2	1 НК НКС	17,85 673 530.6	23.23 659 547.6	33,25 641 561.9	47.70 622 567.5	68.95 594 557.2	85.12 585 555.2	110.83 575 552.3
Acciaio l	1 НК НКС	18.2 648 493.7	23.75 631 510.6	33.9 616 530.4	49.75 572 515.9	71.55 552 513.2	88.3 544 512.5	114.6 538 513.8
Meteorite	1 НК НКС	26.26 311 271.32	33.775 312 280.16	49.4 290 269.60	71.675 276 261.91	102.5 269 259.43	125.84 268 259.93	159.1 279 272.61
Blenda	1 HK HKC	30.9 225 144.48	40.74 214 152.03	58.7 206 160.98	85.61 193 162.89	121.63 191 169.09	153.75 179 162.75	206.23 166 154.42
Fluorite	1 HK HKC	33.55 191 123.3	46.68 163 118.3	68.08 153 121.8	96.7 151 128.8	143.56 137 122.7	178.16 134 122.1	
Ottone	1 НК НКС	30.667 228 166.4	43.4 189 150.4	61.65 186 158.3	88.6 180 160.8	128.4 171 158.2	158.9 168 157.3	205.63 167 158.8
Alluminio	1 • НК НКС	43.775 112 117.5	56.0 113 117.8	77.10 119 122.5	109.2 119 121.1	154.825 118 119.5	189.3 118 119.6	
Rame	1 НК НКС	42.98 116 98.68	54.025 122 106.96	79.37 112 102.79	111.725 113 106.40	160.27 110 105.16	199.325 107 102.89	
Galena	1 НК НКС	54.2 73.0 60.50	71.58 69.4 60.12	103.65 65.9 59.62	149.1 63.7 59.37	211.40 63.2 60.14		
Magnesio	1 НК НКС	61.5 57 56.02	79.15 57 56.24	113.625 55 54.50	158.63 56 56.01			

Microdurezza Knoop per carichi compresi fra 15(g) e 500(g).

BIBLIOGRAFIA

- F. GOTTARDI (1951) Contributo allo studio della microdurezza nella calcite. «Mem. Soc. Tosc. Sc. Nat.», Serie A, 58, 161-172.
- [2] F. KNOOP, C. G. PETERS and W. B. EMERSON (1939) A sensitive pyramidal-diamond tool for indentation measurements. « Jour. Res. Nat. B. Stand.», RP 1220, 23, 39-61.
- M. FRANZINI (1966) Ricerche sulla microdurezza dei minerali. I. Blenda, Galena, Pirite.
 «Atti Soc. Tosc. Sc. Nat.», Serie A, 73, 182–191.
- [4] M. FRANZINI and M. TROYSI (1979) Macrohardness derivation from microhardness measurements. «Rend. Acc. Naz. Lincei», Ser. VIII, in corso di stampa.
- [5] M. FRANZINI e M. TROYSI (1979) L'effetto del ritiro elastico dell'impronta nelle misure di microdurezza Vickers e Knoop. II. Discussione e interpretazione dei dati. «Rend. Acc. Naz. Lincei», Ser. VIII, in corso di stampa.
- [6] S. BONATTI, M. FRANZINI and L. SCHIAFFINO (1970) The Bagnone meteorite. «Atti Soc. Tosc. Sc. Nat.», Serie A, 77, 123–133.