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Equazioni differenziali ordinarie. —  Periodic Solutions o f 
certain third order differential equations. Nota di H. O . T e j u m o l a , 
presentata <#> dal S ocio  G. S a n s o n e .

R iassunto. — Si dimostrano due teoremi di esistenza di soluzioni periodiche per 
una classe di equazioni x  '+/(•£) x  +  g  {%) % +  h (x) =  p  (t , x  , x , x).

i. We shall be concerned here with equazions o f the form

(1.1) x + f ( f )  x -\-g  (x) x  +  h (x) =  p  ( t , x  , x  , x) ,

where the functions /  , g  , h and p  are continuous functions of the arguments 
shown, and p  is co-periodic in t  (co >  o). In the special case

(1.2) x +  ax +  bx +  cx =  p  (/) ,

with a , b , c all constants and p  co-periodic in t, it is well known that (1.2) 
admits of a unique co-periodic solution provided one of the following condi 
tions holds:

(1.3) ac < 0  , b arbitrary ,

(1.4) ac >  o and a~x c ^  4 7t2 co~2 , b arbitrary,

(1.5) b 7̂  47c2 co~2 , a , c  arbitrary.

Recently, Ezeilo [1, Theorems 1, 2, 3] showed that the conditions (1.3) and
(1.4) for existence of co-periodic solutions can be extended to the more general 
equation (1.1). Our interest here centres round the alternative condition
(1.5) , and wç shall show that suitable extensions of this are also available for 
the equation (1.1).

T heorem  i . Suppose there exist constants A  >  o , b with

(1.6) b  <  4 7C2 CO“2

such that g  , h and p  respectively satisfy

(!-7)

(1-8)

(!-9)

g  (x) <  b fo r  a ll x  , 

h (x) sgn x  >  A  (I x  \ >  1) ,

I p  ( t , ^ , y  , z) I <  A  fo r  a ll t  , x  , y  , z  .

Then the equation (1.1) has at least one <&-periodic solution fo r  a ll arbitrary 
continuous function f .  (*)

(*) Nella seduta del 21 aprile 1979»
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The condition (1.8) corresponds to the situation c >  o in (1.5). We also 
have, in the other direction; that is, for c <  o (1.5), that

T h e o r e m  2. Suppose that there exists a positive constant c such that

(1.10) X~̂  h (*) <: --- C ( | * |  >  i)

and that g  and p  satisfy the conditions (1.7) and  (1.9) in Theorem 1, with b 
subject to (1.6). Then .(1.1) has at least one <0-periodic solution fo r  a ll arbitrary 
continuous functions f .

It is of interest to compare the above results with Ezeilo’s [1, Theorem 4] 
for the special case

x f -  ax f - g  (x) % +  h (x) =  p  ( t , * , *  , x) 

with a >  o a constant, g  and h satisfying

(1.11) g  (*) <  b , x h { x ) > c x 2 — d  f o r  all x ,

where b > o , c > o , d ' > o  are constants and

(1.12) ab <  c .

The condition (1.12), with a , b , c positive and a~x c =  4 n2 co~2 implies (1.7). 
What is more, in Theorems 1 and 2 above, the function /  is arbitrary, the 
constant b satisfying (1.6) need not be positive and in contrast with (1.11), 
h (x) need not take the sign of x. It must however be conceded that the con 
dition on p  in [1, Theorem 4] is weaker than the corresponding one, (1.9) 
here.

Our generalization here of (1.5) may seem a partial one, since it concerns 
only the case b <  4 n2 o ~ 2 and not

(1.13) b >  4 7U2 6)~2 .

It turns out however that the situation considered here is the only outstanding 
interesting case. For, if (1.13) holds, then the resulting equation is either of 
the Routh-Hurwitz type (cf [2]) or is covered by the results in [1] and [2].

2. Notations. In what follows the letters D , T>1 , D 2 , with or without 
suffixes denote finite positive constants whose magnitudes depend only on 
the constants b , c , co and A as well as on the functions f  , g  and k. The 
with suffixes, D 1 ,D 2 , ‘. retain a fixed identity throughout, while those 
without suffixes are not necessarily the same each time they occur.

3. Proof of Theorem 1. The procedure here is by the Leray-Sehauder 
fixed point technique. Consider, instead of (1.1), the parameter X-dependent 
equation

(3.1) x j - T f  (x) x +  (1 -— X) bx +  \ g  (x) % +  (1 — X) cx +  \ h  (x) —

=  \ p  (t , x  , x) ,
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where c is an arbitrarily chosen, but fixed, positive constant and o < X < i .  
Observe that (3.1) reduces to the original equation (1.1) when X— 1 and to 
the constant—-co-efficient equation

(3.2) x +  bx +  cx .=  o

when X — o. With b subject to the condition (1.6), the equation (3.2) does 
not admit of non-trivial co-periodic solutions. Therefore, following the .argu 
ments in [1; § 4], it will suffice here to prove the existence of an a-priori bound:

(3.3) max ' ( \ x ( t ) \ + ' \ Z { t ) \  +  \ x  (7) I) <  D
0  < + < C O

for every co-periodic solution of (3.1), with Xe (o , 1).
To establish (3.3), let x' — x ( t )  be an arbitrary co-periodic solution of 

(3.1), with o <  X <  I. Multiply (3.1) all thorugh by x  and integrate between 
T and T +  co. We have, since x  is co-periodic and g  and h satisfy (1.7) and 
(1.8) respectively, that

T + C O T + C O T +  CO

x2 dt  ■— b x 2 dt  <  A I x  I dt
T T T

But the co-periodicity of x  also implies that (cf [1; § 5])

(3.4)

Therefore,

. 7T2 CO- 2  j XT + û i  T  +  ÛJ

x 2 dt  <  I x2 d t .

7T~2 co2̂  x2 dt  <  A  J

T  +  CO T +  CO

x2 dt  <  A I I x  I dt

< a ( J  X2 d/j 1
T

T + C O

<  \  A  7t—1 co3/2  ̂J  x2 dt  j

by Schwarz’s inequality and (3.4). Since b <  4 7c2 co-2, the last inequality 
shows that
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and in view of (3.4), we also have that
T + C Ù

(3.6) j  d( <  D 2
T

for some constants , D 2. Now since x (o) =  x  (co), there exists T0e [o , co] 
such that % ( t 0) =  o. Thus

*  (f) =  J x (s) d s

and so,
To+“

max
0 <t«ù I % (0  I ^  J* I ^ CO I às

T + Cù

< « 1/a  ̂J  x2 (s)

By (3.5), this implies that

(3-7) max I % (t) I <  D .
0<£<cû

To obtain a bound for | x (f) | , integrate (3.1) with respect to t  to yield
T + Û 3

(3-8) j  {(1 — X) ex -j- X [k (x) — p  ( t , x  , x  , #)]} At =  o .

In view of (1.8) and (1.9) it follows that | x  ( tx) | <  1 for some t v  For other 
wise, x (t) >  I for all t  or x it) <  — 1 , so that the left hand side o f (3.8)' is 
either, strictly positive or negative. From the identity

we have that

t

x  (t) =  x  (tx) +  j* ±  (s) d  ̂ ,
Ti

m a x  I x (t) I <  I
0<*<w

<  I

TX+ca

+  j  \ * ( s ) \ d s

*1+« 1/2 
+  6>1/2 (  J  X2 (S) d j) ,

T X

max j x  (t) I <  D ,
0<*<û>

and hence,

(3.8)

by (3.6).
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We now turn to the bound for j x (t) |. Multiplying (3.1) by x and inte 
grating we obtain

T + C D  _  T  +  CD T + C D

T  T  T

where

Q =  ' k p ( t i x ) x i x)  

satisfies 

(3-IO)

by (1.9), (3-7) and (3,8).

— (1 — X) b t  — \ g  (x) £  ■— (1

IQ I < D S)

But by (3.7), I f  (X) I < D 4 ,

X) cx —  \ h  (x)

so that
T  +  CD

• X i f ( £ )  x x dt

T + C D

<  D 6 J  I x x j d t

T - f  CD T + C D

< D e  ̂  ̂ '
T  T

T + C D

T

by (3.5). Thus from (3.9) and (3.10), we have that

and hence that

T + C DJ  x2 dt  <  D 7

T + C D

( / ~ r
T

T

j  x2 dt  <  D 8

T  +  CD

for some D8. The result
max I x (f) I <  D
0 < £ < c d

now follows readily. This completes the verification of (3.3), and also the 
proof of Theorem 1.

4. Proof of Theorem 2. The procedure is exactly the same as in § 3 except 
for the modications which we now point out. In order to utilize hypothesis 
(1.10), consider, instead of (3.1), the X-dependent equation

(4.1) x  +  y f ( f )  x +  (1 — X) b% +  X̂  (X) % -—■ (1 — X) cx +  \ h  (x) =

— ( t , x  , £  , x) ,
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where c >  o is an arbitrarily chosen but fixed constant and, as before, 
o <  X <  1. Note that (4.1) reduces to the original equation (1.1) when X =  1, 
and for X =  o, it reduces to the linear equation

(4.2) x b x  — cx — o

Since b is subject to the condition (1.6), it is easy to see that the equation (4.2) 
does not admit of a non-trivial co-periodic solution.

The estimates (3.5), (3.6) and (3.7) can now be obtained as in § 3 for 
any co-periodic solution x (f) of (4.1). In fact, the only other m odification's 
in the verification of max | x (t) | <  D. Integrating (4.1) with respect to t ,

0 <t<(ù
and using the co-periodicity of x =  x (f), we have analogous to (3.8), that

T-ftò

(4.3) J  {hx {%) — \ p  (t , x  , x  , *)} dt  =  o ,
T

where

hx (x) =  —  (1 — X) cx +  \ h  (x) , o  <  X <  I .

Note from (1.10) that

x - 1 hx (x)  <  —  c ( \ x  I >  1) , o  <  X <  I ,

so that

(4.4) ' hx(x)  <  — cx if ^ >  I ,

and

(4.5) ^  ( j )  >  —  cx if X < ----I .

Thusj so long as o <  X <  1 (4.3) and (1.9) imply that there is a D 9 >  1 such 
that

(4.6) I x  (T) I <  D9 for some T.

For otherwise, we have that either ( / )>  D9>  1 for all /  or x (t) < — D 9 < —- 1 
for all t. In the former case, the left hand side of (4.3) will, in view of (4.4), 
be strictly negative if x (t) >  1 is large enough and, in the latter, strictly 
positive by (4.5), if x ( f)  <  —  1 is large enough. Thus (4.6) holds. The estimate

max J (/) | <  D
0 < £ < <0

will now follow in the usual way from the identity:

t

x  (t) == x  (T) +  I x  (s) d.r
T
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and the estimates (4.6) and (3.6). The rest of the proof of the boundedness 
of I x (f) \ . now follows precisely as in § 3.
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