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Equazioni funzionali. —  Abstract monotone mappings and appli 
cations to functional differential equations. Nota di M iha i T u r in ic i,  
presentata <*> dal Socio G. S an son e.

R ia s s u n t o . — In questa Nota si dimostra un teorema di punto fìsso per una classe di 
applicazioni monotone in senso astratto.

1. Throughout this Note, for every nonempty set X , & (X) denotes the 
class of all nonempty Y c  Y. Let X be a nonempty set and let <  c  X2 =  
=  X X X be an ordering on X. For every ^ e X , Y c X ,  put Y ( x , < )  =  
{ y e  Y  ;x  < y } . Denote by >  the associated dual ordering (i.e., x ^ > y  iff 
y  < x )  [2, p. 3], and let =5 <  (resp. => > )  denote the set-ordering defined on 
& (X) by: Y <  Z (resp. Y => >  Z) iff Y =>Z and, for every y e  Y there is 
a z e  Z with y  <  z  (resp. y  z).

Let (X , t ) be a topological space and let <  be an ordering on X. <  is 
said to be a closed ordering iff X (x , < )  is closed, for every x  e X. (X , t )  

is said to be => <  (resp. ^  '> )—compact iff, for every <  (resp. => > ) — 
directed family °ll c: 0* (X) of closed sets, D ^  0 . Clearly, if (X , t )  is com 
pact in the ordinary sense [5, ch. 5], it is also 13 <  (resp. > ) —compact, 
but the converse is not in general true (take X =  R_ (resp. R+) with the 
usual topology and the usual (resp. dual) ordering).

2. Let X be a nonempty set, <  an ordering on X and T : X —> X a 
monotone mapping (i.e., x  <  y  =>Tx <  Ty) from X into itself. An useful 
result concerning the fixed points of T (a result that may be considered as a 
partial refinement of [1, Theorem 3]) may be stated as follows.

T h e o r e m  2.1. Let X , <  ,T  and x e X .  satisfy

(2.1) every chain C c= T (X) has a supremum (infimum)

(2.2) x  <. T x  (resp. x  >  Tx).

Theni there exists a v e X (resp. a u e X i )  such that (a) v =  Tv (resp. 
u — Tu), (b) x  <  T x  (resp. ^  *> Tx) => x  < .v (resp. x  >  u).

Proof. Suppose x  <  T x  (the proof for the dual ordering >  is similar) 
and put Y — {x e X ;  x  < T x ] . From Hausdorff maximal principle [5, 
p. 33] there exists a maximal chain L e  Y; with j e L ;  as T  is monotone, 
T (L) c= T (Y) c: T (X) is also a chain in T (X) and so, from (2.1), there exists

(*) Nella seduta del io  marzo 1979.
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v =  sup T (L). Since # <  T x  e  T (L), we get x  < v ,  which gives (again by 
the monotonicity of T) T x  < T z/, V ^ eL , and therefore (from the definition of 
the supremum) v <  Tv, i.e., v e Y. Now, since x  <  v , V# e L, we infer 
(from the m aximality of L) v e L. As v — sup T  (L) and Tv  e T (L), we get 
Tv  <  v and thus (combining with the preceding, relation) v — Tv, completing 
the proof. Q.E.D.

Remark 2.1. A sufficient condition for (2.1) is

(2.3) every chain C c: X has a supremum (infimum).

COROLLARY 2.1. Suppose that, in the above theorem, conditions (2.1) and  
(2.2) are replaced respectively, by

(2.1)' every chain C c  T (X) has in the same time a supremum and an 
infim um

(2.2)' either x  <  T x  or x > T x ,

Then, there exist v , u e X such that (a) v =  Tv  , u  — Tu, (b) x  <  T x  
(resp. x  >  T x ) => # <  v (resp. # >  u), (c) #  — T x  =$ u < x > v .

Remark 2.2. U nder the conditions of the above corollary, it is justified to 
call v (resp. u) a maximal (resp. minimal) solution of the equation x  =  Tx.

3. Let (X , t )  be a topological space, <  an ordering on X and T a mo 
notone mapping from X into itself. The main result of this Note (a result 
that m ay be considered as a “ topological ” version of Theorem 2.1) is the 
following.

T h e o r e m  3.1. Let (X , t )  , <  , T and x  e X  satisfy

(3.1) both <  and  >  are closed orderings

(3.2) T (X) (the closure of T (X)) is both <  and  ^  > —compact

(3.3) either x  <  T x  or x > T x .

Then, there exist v , u e X  such that (a) v =  Tv , u = T u ,  (b) x < T x  
(resp. a; >  T x ) => x  <. v (resp. x  u), (c) x  =  T x  u < x  < v .

Proof. Let C c T  (X) be an arbitrary chain in T (X). Firstly, we prove 
that for every z  6 C , # e C, z  and # are comparable. Indeed, suppose z  and x  
are not comparable. From (3.1) there exists a neighborhood U e  f  (z) such 
that, for every u 6 U, u and # are not comparable. Let V g /*  (z ) be arbitrary 
(without loss of generality we may suppose V c U ). As our assumption implies 
z e C \C , there exists a y  e C such that y  g V c U ,  i.e., y  and # are not com 
parable, a contradiction, proving our assertion. In this case, the family
{C (x , < ) ; r e C } c  (T (X)) is a < —directed family of closed sets and so,
from (3.2), O {C ( * , < ) ; *  e C} M is nonempty and closed. Furthermore,
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for every zê e M , C c  X (w , > ) , and this gives C c  X (w , > )  =  X (w , > ). 
From this fact, M will consist of a single element, i.e., M =  {s}, for some 
z  6 X. Firstly, from the above remark, # <  z  , \fx  e C. Now, let u e X  be 
such that x  <  u  , Vx e C. This means that C c: X ( u , > )  and thus ^ e C c  
X O ,  > ) =  X  (u , > ) ,  i.e., z < u y showing that # =  supC . An analogous 
reasoning m ay be done for the dual ordering > , and so, (2.1)' holds. On 
the other hand, (3.3) coincides with (2.2)'. Therefore, corollary 2.1 applies, 
and this completes the proof. Q.E.D.

Let A  be a nonempty set and let ^  be an ordering on A. A family 
{Ta ; « e A }  of mappings from X into itself is said to be a monotone family 
iff, for every a , b e A , a ^  b, and x  e X ,  we have T a x  <  T b x.

Now, suppose {Ta ; a € A} is a monotone family of monotone mappings 
from X into itself, having a unique maximal and minimal fixed point.

C o r o l l a r y  3.1. Suppose that, fo r  every a e A, conditions of Theorem 
3.1 are satisfied y with  T replaced by T a. Furthermore y fo r  every a G A, let S {a) 
( fesp . s(d)) denote the m axim al (resp. minimal) solution of the equation x  =  T ax. 
Then y necessarily y the mappings S : A —> X and s : A -* X are monotone.

4. Let n >  I be a positive integer and let (Rw,-;||«||) be the euclidean 
^-dimensional space endowed with a norm ||*||. Furthermore let {I , J} be 
a partition of {1 ,***,^}. Define an ordering <  on Kn by

i) (x1 , • • - , x n) <  (^! , • • -, y n) iff X, <  y i } V? € I , x} > y } , 'ij 6 J

where, in the right hand, <  denotes the usual ordering on R, and its dual. 
Clearly, <  is a closed ordering on Rn.

In what follows, X (resp. A) denotes the set of all continuous # : R+-> R W 
(resp. a : R+ -> R+). For every x  e define || # || e A by

U) Il x II \f) =  Il X (t) II, V/eRj.

and J # I e A by

Ui) I ^  I (t) =  sup {|| ^  (j) H ; j  6 [o , t]} y Vt  e R+ .

It is well known that X is a locally convex space, with the topology 
defined by the directed family of seminorms Sf  =  {|*| it) ; t  e R +} Denote 
also by <  the ordering on X induced by the ordering <  on Rw, in the usual 
way, i.e.,

iv) x  <  y  iff x i f )  <  y  (t) , Vt e R+ .

Clearly, <  is a closed ordering on X and so is >  its dual.
Let tv— t  e 0 * (R +) be a given mapping. Denote for simplicity R + =  

=  {t ; 1 6 R+). Let x° g Rw and k  : X xR + —> Rn. Then, we m ay consider

13. — RENDICONTI 1979, voi. LXVI, fase. 3.



Lincei -  Rend. Se. fis. mat. e nat. -  Vol. LXVI -  marzo 1979192

(formally) the functional differential equation

(4.1) x f (t) — k (x , t) , W e R+ ; x  (o) =  x°

and the associated functional integral inequalities

t

(4.2) x (t) <  x° +  J 
0

k (x , s ) d s , ' i te  R+

(4-3) X (t) >  X° +  1

t

k ( x , s) d s , i t  <= R+
0

The main result concerning (4.i)-(4.3) m ay be stated as follows.

Th e o r e m 4.1. Suppose there exist g  e A , K : A X R+ R+ , and x  e X 
such that (denoting X3 ?= \x  e X ; || x  || <  g} and  A3 =  {a e A ; a <  g})

(4.4) \fx  e X] the map t \— k ( x  y t) is continuous

(4.5) i a e h . ^  the map 1 1— K (a , t) is continuous

(4.6) k is monotone (x , y  e X t , x  <  y  => k (x , • ) <  k (y  , • ))

(4.7) K w1' monotone (a , b e Aj , a <  b => K , • ) <  K [b , • ))

(4.8) P ( ^ / ) | | < K ( | | a ; | | ,  0 , V ^ X ,

t

C4-9) II*0II +  J) d.y <  ,§■ (Y) . W g R+
J
0

(4.10) x e X )  and satisfies at least one of the associated functional 
1 integral inequalities (4.2), (4.3).

Then, there exist z / ^ e X ^  such that (a) v and u are solutions of (4.1), 
(Jd) i f  j g X ]  is a solution of (4.2) (resfi. (4.3)) then x  <  v (resp. x  u)} 
(c) i f  x  £ X3 is a solution of (4.1), then u <  x  <  v.

Proof. Let T : X5 —► X be defined, for every x  e X i , by

t

(4.11) T x  (t) =  x° -j- I k (x , s) ds , V t e R + .
0  ■ *

From (4.8)'+(4.9), T  (X3) cz X3, i.e., || T x  || <  g , Vx e X t . On the other 
hand, from (4.7)+(4.8), || (Tx)' || =  || k (x , • ) || <  K (|| x  || , •) <  K (g  , • ) ,
V x e X 1. So from the well known Arzelà-Ascoli theorem [4], [5, p. 234], 
T  (Xj) is relatively compact. Finally, (4.6) says that T is monotone. Thus, 
Theorem 3.1 is entirely applicable, and this completes the proof. Q.E.D.
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Remark 4.1. As in § 2, it is justified to call v (resp. u) a maximal 
(resp. minimal) solution of (4.1).

Remark 4.2. In the above theorem, the mapping T defined by (4.11) 
is not in general continuous. Therefore, Banach’s fixed point theorem, 
as well as Schauder-TychonofFs fixed point theorem (see, e.g., [4]) are 
not in general applicable.

Remark 4.3. An useful application of these methods might be done 
in the context of projective functional (differential) equations, [3], [6], in 
which the class of (abstract) monotone mappings plays an essential role.
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