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Equazioni differenziali ordinarie. — On the existence of periodic
solutions of certain third order non-dissipative differential systems.
Nota di James O.C. EzeiLo, presentata ® dal Socio G. SANSONE.

RIASSUNTO. — Si danno condizioni sufficienti perché I’equazione X + AX -+ BX -+
+HX)=P@¢,X,X,X), con A, B,C matrici #X#» simmetriche con elementi costanti
Pt+ow,X,Y,Zy="P(,X,Y,Z) ammetta almeno una soluzione periodica.

1. We shall be concerned here with real third order differential systems
of the form:

(1.1) X+AX +BX+HX)=P¢,X,X,X)

in which A, B are constant symmetric 7 X 2 matrices and X , H , P are #-vec-
tors with H , P dependent only on the arguments shown. It will be assumed
as basic throughout that P (#, X, Y, Z) is continuous and e-periodic in #
(that is P¢( + o ,X,Y,Z)=P¢#,X,Y,Z) for some @ >o0), and that
there are constants 8 = 0,¢ = o such that

(1.2) [1PE X, Y, DI<8+<UXI+IYI+NZID

for arbitrary #, X ,Y and Z. Here and elsewhere the symbol || - || denotes
the Euclidean norm. The derivatives 04;/0x;,4; and x; (1 <7, j < #) here
and elsewhere being the components of H and X respectively, are also assumed
continuous, with the (Jacobian) matrix J,(X) = (3%44/9x;) symmetric, for
arbitrary X.

Let 2 (A),2,(B), 2;(Jo (X)) denote the eigenvalues (all real) of A, B,
J» respectively and let o = max X;(A),B = max 2;(B). The following

1<i<n

1<i<n
result, extending an earlier (scalar) result in [1], was announced, but without
proof, at the International Congress Mathematicians in Helsinki (in August
1978) :

THEOREM. There exists a constant g = ¢4 (3 , A, B, H) > 0 such that if

o, ng one at least of o ,P is non
positive ,

(1.3) Yo = ;n}f 2 (Ja (X)) >
L oB, if « and B are both positive,

then (1.1) has at least one w-periodic solution provided that e < e .

(*) Nella seduta del 1o febbraio 1979.



JaMES O.C. EzZEILO, On the existence of periodic solutions, ecc. 127

The object of the present note is to supply now a detailed proof of this
theorem.

The reference here, in the title, to the system (1.1) as non-dissipative
stems from the condition (1.3) which is clearly ““ non Routh-Hurwitz ”’. Note
that there is no loss in generality in assuming that H (o) = o; for the sub-
traction of H (0) from either side of (1.1) gives an equation with H , P replaced
by Hg, Py, where Hy(X) = H (X) — H (0) which satisfies Hgy (o) =0 and
Py = P —H (o) which satisfies

NP, X, Y, )| <8+ XI+IYN+IZI)
with 8, = 8 +4- || H (0) ||, which is the same as (1.2).

2. NOTATION. In what follows we shall use y’s with or without suffixes

to denote positive constants whose magnitudes depend only on 3, A, B and H.

The v's without suffixes are not necessarily the same in each place of occurence

but the numbered ¥'s:ve, Yy, Yz, - retain a fixed magnitude throughout.

Next, given any pair of vectors, X and Y say, with components (%, ,- - -, &)

and (¥, ,- -+, ¥,) respectively, we shall use (X, Y) to denote their scalar pro-
n

duct Z} :Q ¥;. Thus, in particular (X, X) = || X |2

3. The proof is by the Leray-Schauder technique, with (1.1) embedded
in the parameter-dependent equation:

3D X+p@X+BX) + (0 —w) X +uH =yP

where the parameter p is as usual restricted to the closed range [0, 1]. Note
that, when p = o, (3.1) reduces to the equation

X+yvX=o0

which clearly 'has no non-trivial w-periodic solution. Also, when p =1,
(3.1) reduces-to the equation (1.1). Thus the theorem will follow from the usual .
Leray-Schauder fixed point considerations (see for example theorem 1.39
of [3]) if it can be shown that there are constants vy, , v, , vs all independent
of w, such that ‘

(3-2) IXI<v, X<y, and [X|<ys (=<¢=<0)

for every w-periodic solution of (3.1) corresponding to 0 < u < 1.

4. Preliminary lemmas. We shall make occasional use of the following
lemmas:

LeMMA 1. Let D be a symmetric nXn matriz and X any n-vector. Then
(4.1) 4| X|P<(X,DX) < || X[}

where dy , dy are respectively the least and the greatest of the eigenvalues of D.
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This is a well known result (see for example [2; p. 288]).

LEmMMA 2. If X = X (¢) is twice continuously differentiable in ¢, then
(4-2) f &, H(X)ydt = (X, H X)) — f (X)X, Xy ds,
the integrals here bez'kg indefinite integrals.

n
Proof. Since (X ,H (X)) = Z &; 2; we have. on integrating by parts,
that =

=<X,H>—f<1h<X>X X) dz

which establishes (4.2).

Throughout what follows X = X (#) denotes an arbitrary -periodic
solution of (3.1) with p restricted always to be the range o <p <<1. The
objective now will be to establish (3.2).

The main tool is the scalar function # = « (¢¥) given by

(5.1) =136 (X, X)y—6,(X, X + (X, X

where 4, > 0, 4, > 0 are constants whose values are as yet undetermined
but will be fixed to advantage as ¥’s in the course of the proof. We have, by
an elementary differentiation with respect to ¢ that

= —b (X, pAX + uBX + (1 — ) yo X + pH —pP) — 4, (X, %) +
48 (X, pAX + pBX + (1 —w) o X + pH — pPy + (X, Xy —
— (X, pAX + pBX + (1 — @) yo X + pH —pP). -
Note that the terms
(X, BXy, (X, BX), (X,AX)

which occur on the right hand side of (5.2) are perfect #differentials since
A, B, are symmetric. Also, since J, (X) is symmetric we have from equation
2.4 (3) of [2] that

K, H ) =5 [ %), %) do
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so that the term (X, H (X)) which occurs on the same right hand side of
(5.2) is also a perfect r-differential. Thus we may indeed reset (5.2) in the
form

(5.3 =1y + 1ty + 2
where
w = {(X, X) —ps (X, AR} +
+ {uby (X, AX) — 6, (X, (1 — ) Yo X + pH) —p (X, BX)} +
+ {6 (X, (1 =) v X + pH)} =
= 2y - Uy + 243,
say,

(5.4) o= —u (b, X + X —8,X,P)

and #; is a perfect zdifferential. Hence, integrating both sides of (5.3) with
respect to ¢ from # = 0 to # = w, we have, X being w-periodic, that

(5.5) f(u]]+u]2+u,3) dtﬂl—fuzdt:o.
0 o

Now, by Lemma I,
(X, ARy <o X
so that, since o < p <1,
6 = (1 —ab) | X
Nex’f, since H (0) == o, we have from equation 2.2 (3) of [2] that H (X) =

r”

= J Jn (6X) Xdo so that, in particular
0

O, H 00 = [ (X, 1@ X) do

Z Yol X[
by (1.3) and (4.1); and hence

(5.7) s = b Yoll X |P

9. — RENDICONTI 1979, vol. LXVI, fasc. 2.
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Finally, we have by Lemma 2 that

(3.8) f(X,Aj'Q dz=~—f(AX,X) dr

0
z—aanHZdz
0

[0

in view of (4.1), and then analagously for the terms f (X, X)ds and

{ (X ,H (X)) d# appearing in f uy, d¢ that
y 0

0

0

(5.9) f<X,X> dtz—fnxnzdz

[0

(5.10) [ & meyar=—[ oo, 0w

0

< —vo [ IXIPar,
[1]

the latter inequality deriving immediately from the use of (1.3) and (4.1).
Since

(5.11) (X, BX) <B|IX|P

it is clear from (5.8), (5.9), (5.10) and (5.11) that

w (2]

(5.12) [nde=Grve—ta—p [ 1% par

0

Thus we have from (5.6), (5.7) and (5.12) that

« «

(5.13) ‘ (24 — s + ty5) dt > f wuq dt
0

.o

where

wg= (1 —ab) | K|F+ G Yo— o — B I XIE + Lavoll X1
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A most crucial part of our proof is to show now that the so far undefined
positive constants &, , &, in (5.1) can in fact be fixed such that

(5.14) e =1 (I XIEH X+ X B

for some v, We shall distinguish here two cases (already highlighted in (1.3))
namely: (1) one at least of o, B is non positive, (11) « and B are both positive.

We start with the case (I). Suppose for example that « <<o. Then
clearly (1 — «b,) =1 for arbitrary 4; > o.

Also

biYo— by —B =>1;
if

(5.13) =M +18DYe
for arbitrary &, > 0. Thus when « << 0 we have that

ug = (| XIE+ v I X+ Yoyl X 1P

if 4, is fixed by (5.15) and 4, = vy, which establishes (5.14) with y, = min
(T, YssYoYs). Suppose on the other hand that B <o. Then, if « <o,
by = y; = b4, clearly secures the estimate:

g Z | XIP 4 vors (1X 2+ 11 XD
which implies (5.14) (with vy, = min (1, yov,)) while the choice
by=3%oa by =3y, 02
when o > o0 secureg the estimate:
s Z 31X P+ rooe I XIP + yo o [ X )

which again implies (5.14) but with v, = 4 min (1,4 vo2?, 3 vo«?. Thus
whether &« <o or B < o it is possible to fix &, = v, &, = ¥ so that (5.14) holds.

We turn next to the case (II): « > 0 and B > o. Note that, since y4 > of,
by (1.3), it is possible to choose yg such that

(5.16) By <y <a !
Now fix 6; =1, and b, =3 o2 (y,vs — B) >0, by (5.16). Then

g = (1 — oY) I|X[i2+%('fs 80—(5)[]X[12+%oc“1(yoys-@)l|X||2
>y (I XE+HIX I+ X[ |

for some ¥, since (1 — ayg) and (yg v, — B) are both positive, by (5.16). Thus
in the case (II), (5.14) holds for some appropriate choice of 4, , 4, as y's. We
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have thus conclusively verified that, subject to (1.3), there exist v, , v;0 such

that if
(5.17) by =5, 6 = Y10

then (5.14) holds.

We assume henceforth that 4, and 4, are fixed by (5.17) and define

p=rp() =0 by
=X+ IX2+ X

It is clear then from (5.14), (5.13), (5.5), (5.3) and (1.2) that

«

[0) [O)
Y4 fpzdtsmj pdf+€¥i?f o% dz
0 0

0 0
for some v;; and vy.,; so that if, for example,
(5-18) 5S‘%‘Y4Y1_21

as we assume henceforth and vy,; =2 vz vy then
w

[‘Pzdl‘SYlal pds
0 0

w
~ 1
=< Y3 w! (J e dt)
0

by Schwarz’s inequality. Hence

that is
- (5-19) f Fdt <y =vso.
0
The result (3.2) is a consequence of (5.19) as will now be shown. We
begin by noting that (5.19) implies that
(5.20) fxz%dtSYm,f«’ff?dl‘SYu,fﬁ?deYm G=1,2,---,n)

0 0 0
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[0

The inequality: ( x; d¢ < vy, here imples that |z, (%) | < vy = 'Y%4 o7t for

0 2

some 7€ [0, o], Thus, since x;(#) = x;(7) + f #; (s) ds, we have at once that

T+

Sup 141 ()| <+ | (5 ds
0<t<o J
T

2
§Y15+®§ ( {j‘?@)ds) )

T

by Schwarz’s inequality, which, in view of the second inequality in (5.20),
leads in turn to the estimate

Sup | £ ()| <1 -+ of 1,

<i<w
This is true for each 7 =1,2,---,# and hence
(5.21) [ Xl <vis(0 =2 =< )

for each w-periodic solution X (#) of (3.1) corresponding to o <u < 1.
Analagously the second and third inequalities in (5.20) also lead to the
estimate

Sup | #(#) | < vis+ ot vd, G=1,2, -, 7%)
0<t<o

which in turn implies that
(5.22) Xy (=t<o)

for each w-periodic solution X (#) of (3.1) corresponding to o <u <1. It
should be pointed out, however, that the middle inequality in (5.20), whose
only role, as far as the verification of (5.22) is concerned, is to secure the
existence of a v € [0, w] such that | #; () | < yy; is not actually crucial to the
proof of (5.22) once the last inequality in (5.20) is available. This is because
the existence of a v€ [0, w] such that |2;(7) | <y for some vy is already
a consequence of the w-periodicity condition: x;(0) = x; () which in fact
implies that #;(7y) = o0 for some 7t,€[0,®], so that because of the
identity:

H = a0+ [ £©ds
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we have that

To+®
1/2
(5.23) sup 14,01 =0t ( [ @0 as)
o0<i<w Y
To
_<_C\)%'Yi4, (z':I,Z,---,n),

thus leading to: | X || <y <z < ) as before.

To establish the last of the inequalities (3.2) it will suffice now to verify
that

(5.24) [1% e =
0

for any w-periodic solution of (3.1) with o <u <1. For if indeed (5.24)
holds, so that

(8]

(525) fﬁfdtSYm <Z':I!2)..'!n>)

0
then, since &;(t;) = o for some t;€ [0, ®] so that

[4 t

o () = & () - f;c@ds: fse(s)ds,

T1 T1L
we shall have that
1iw
12
(5.26) Sup | # )] < ot (f & (s) ds)
0<t<w
. T1
SO)%Y%S (Z':I,Z)"')n)’

by (5.25), which leads to the remaining estimate:
(5.27) RN =1 o=t=aw)

in (3.2). As for the actual verification of (5.24) it is convenient to take a scalar
product of either side of (3.1) with X and integrate with respect to ¢ from
t=o0 to t=aw. Since X, X are already subject to (5.21) and (5.22) and
(AX , X) is a perfect #-differential, this integration shows readily in view of
(1.2), that

© ©

[0 de < [ %01 [1R0-0 %00

%

w w

< {rowt +e ([ux dt)m} ( Juxe dz)m -
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[0}
Thus, since j[[ X|2ds <y, we must have that
0

w X0 N - 1/2
(5.28) ﬁmmwSM(ﬁmwﬂ .
0 1]

Hence

ﬁﬁwws&
0

which is (5.24). Thus (5.27) holds if € <4y, vi. This completely verifies
the theorem with e = 3 v, Y12 -
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