Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Olusola Akinyele

Stability of the abstract differential inequalities of the Cauchy type

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 66 (1979), n.2, p. 117-125.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1979_8_66_2_117_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> $\mathrm{http}: / / \mathrm{www}$. bdim.eu/

Equazioni differenziali ordinarie. - Stability of the abstract differential inequalities of the Cauchy type. Nota di Olusola Akinyele, presentata (*) dal Socio G. Sansone.

RIASSUNTO. - Si trovano condizioni sufficienti per la stabilità e la stabilità asintotica delle soluzioni di una classe di disequazioni differenziali.

i. Introduction

Let $u(t)$ be a function from $\mathrm{R}^{+}=[0, \infty)$ into a Banach space Y with norm $\|\cdot\|$ and let it satisfy the differential inequality of the form.

$$
\begin{equation*}
\left\|\frac{\mathrm{d} u}{\mathrm{~d} t}-\mathrm{A}(t) u-f(t, u)\right\| \leq g_{1}(t,\|u\|), u\left(t_{0}\right)=u_{0} \tag{I}
\end{equation*}
$$

for $\|u\|<\rho$, where $f \in \mathrm{C}\left(\mathrm{R}^{+} \times \mathrm{Y}, \mathrm{Y}\right), f(t, o)=0, g, \in \mathrm{C}\left(\mathrm{R}^{+} \times \mathrm{R}^{+}, \mathrm{R}^{+}\right)$and $\mathrm{A}(t)$ is a closed linear operator with dense domain and generally unbounded.

In this paper, employing the technique of differential inequalities and the comparison principle, under some conditions on $[\mathrm{I}-h \mathrm{~A}(t)]^{\mathbf{1}}$ for sufficiently small $h>0$, we give a set of sufficient conditions for the various types of stability properties of (I). Because of the obvious advantages derived from the use of several Lyapunov functions in obtaining stability results, we also give a set of sufficient conditions for the stability properties of the differential inequality (I) in terms of several Lyapunov functions. In addition we give sufficient conditions under which every solution $u(t)$ of (I) tends to zero as $t \rightarrow \infty$. Our results in this paper contain some known results as special cases (cf: 1, 3].

2. Main Results

Definition 2.i. Let $u(t)$ be a function defined and continuous for $t \geq t_{0} \geq 0$. Suppose $u(t)$ is a strongly differentiable function such that $u(t) \in \mathrm{D}(\mathrm{A}(t))$ for $t \geq t_{0}$; and satisfies (I) for $t \in\left[t_{0}, \infty\right) \sim \mathrm{E}$ where E is an at most countable subset of $\left[t_{0}, \infty\right)$. Then $u(t)$ is said to be a solution of the differential inequality (1). We shall assume throughout this paper, that the solution $u\left(t, t_{0}, u_{0}\right)$ of (I) exists for all $t \geq t_{0}$.
(*) Nella seduta del to febbraio 1979.

Remark. If $g_{1}(t,\|u\|) \equiv 0$, then E is an empty set and so $u(t)$ is a solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d} u}{\mathrm{~d} t}=\mathrm{A}(t) u+f(t, u), u\left(t_{0}\right)=u_{0} \tag{2}
\end{equation*}
$$

If $g_{1}(t,\|u\|)=\varepsilon$, then $u(t)$ is said to be an ε - approximate solution of the equation (2):

We list a few definitions concerning the stability properties of the differential inequality (1) with respect to the origin.

Definition 2.2. The trivial solution of (r) is said to be
I_{1} : equistable if for each $\varepsilon>0$ and $t_{0} \in[0, \infty) \sim \mathrm{E}$ there exists a positive function $\delta=\delta\left(t_{0}, \varepsilon\right)$ that is continuous in t_{0} for each ε such that $\left\|u_{0}\right\|<\delta$ implies $\left\|u\left(t, t_{0}, u_{0}\right)\right\|<\varepsilon$ for $t \geq t_{0}$.
I_{2} : Unformly stable if I_{1} holds with δ independent of t_{0}.
I_{3} : quasi-equi asymptotically stable if for each $\varepsilon>0$ and $t_{0} \in[0, \infty) \sim \mathrm{E}$ there exist positive numbers $\delta_{0}=\delta_{0}\left(t_{0}\right)$ and $\mathrm{T}=\mathrm{T}\left(t_{0}, \varepsilon\right)$ such that $\left\|u_{0}\right\| \leq \delta_{0}$ implies $\left\|u\left(t, t_{0}, u_{0}\right)\right\|<\varepsilon$ for $t \geq t_{0}+\mathrm{T}$;
I_{4} : quasi-uniformly asymptotically stable if I_{3} holds with the numbers δ_{0} and T independent of t_{0};
I_{5} : equi-asymptotically stable if I_{1} and I_{3} hold simultaneously;
I_{6} : Uniformly asymptotically stable if I_{2} and I_{4} hold simultaneously.
Consider the scalar differential equation.

$$
\begin{equation*}
\frac{\mathrm{d} x}{\mathrm{~d} t}=g(t, x), \quad x\left(t_{0}\right)=x_{0} \geq 0 \tag{3}
\end{equation*}
$$

where $g \in \mathrm{C}\left(\mathrm{R}^{+} \times \mathrm{R}^{+}, \mathrm{R}^{+}\right)$, and $g(t, o)=0$, so that $x=0$ is a solution of (3) through ($t_{0}, 0$). This assumption implies that the solution $x\left(t, t_{0}, x_{0}\right)$ of (3) are non-negative for $t \geq t_{0}$. Corresponding to the stability definitions $\left(I_{1}\right)$ to $\left(I_{6}\right)$ we denote by $\left(I_{1}^{*}\right)$ to $\left.I_{6}^{*}\right)$ the concepts of stability of the solution $x=\mathrm{o}$ of (3). We give one such definition since the remaining can be formulated similarly.

Definition 2.3. The trivial solution of (3) is said to be:
I_{1}^{*} : equistable if for each $\varepsilon>0, t_{0} \in \mathrm{R}^{+}$there exists a positive function $\delta=\delta\left(t_{0}, \varepsilon\right)$ that is continuous in t_{0} for each ε such that $x\left(t, t_{0}, x_{0}\right)<\varepsilon$ $t \geq t_{0}$, provided $x_{0} \leq \delta$.

Definition 2.4. A function $\varphi(r)$ is said to belong to the class K if $\varphi \in \mathrm{C}\left([0, \rho), \mathrm{R}^{+}\right), \varphi(0)=0$ and $\varphi(r)$ is strictly monotone increasing in r.

We now give a set of sufficient conditions for the stability property of the differential inequality (1).

Theorem 2.5. Assume that
(i) $\mathrm{V} \in \mathrm{C}\left(\mathrm{R}^{+} \times \mathrm{S}_{\rho}, \mathrm{R}^{+}\right), \mathrm{V}(t, 0)=0$ and

$$
\left|\mathrm{V}\left(t, u_{1}\right)-\mathrm{V}\left(t, u_{2}\right)\right| \leq \mathrm{L}\left|u_{1}-u_{2}\right|,\left(t, u_{j}\right),\left(t, u_{2}\right) \in \mathrm{R}^{+} \times \mathrm{S}_{\rho}
$$

where L is a constant and $\mathrm{S}_{\mathrm{p}}=\{u \in \mathrm{Y}:\|u\|<\rho\}$;
(ii) $b(\|u\|) \leq \mathrm{V}(t, u), b \in \mathrm{~K},(t, u) \in \mathrm{R}^{+} \times \mathrm{S}_{p}$;
(iii) $g_{2} \in \mathrm{C}\left(\mathrm{R}^{+} \times \mathrm{R}^{+}\right), g_{2}(t, o)=0$ and

$$
\mathrm{D}^{+} \mathrm{V}(t, u)_{(2)} \leq g_{2}(t, \mathrm{~V}(t, u)),(t, u) \in \mathrm{R}^{+} \times \mathrm{S}_{\mathrm{p}}
$$

where $\mathrm{D}^{+} \mathrm{V}(t, u)_{(2)}$ denotes the Dini derivative with respect to (2);
(iv) $g_{1}(t, 0)=0$ and $g_{1}(t, x)$ is non decreasing in x for $t \in \mathrm{R}^{+}$,
(v) For each $t \in \mathrm{R}^{+}$, and all $h>0$ (h small) the operator $\mathrm{R}[h, \mathrm{~A}(t)]=$ $=[\mathrm{I}-h \mathrm{~A}(t)]^{-1}$ exists as a bounded operator defined on Y and for each $u \in \mathrm{Y}$

$$
\lim _{h \rightarrow 0} \mathrm{R}[h, \mathrm{~A}(t)] u=u
$$

Then the stability properties I_{1}^{*} to $\mathrm{I}_{\mathbf{6}}^{*}$ of the trivial solution of (3) with

$$
\begin{equation*}
g(t, x)=\mathrm{Lg}_{1}\left(t, b^{-1}(x)\right)+g_{2}(t, x) \tag{4}
\end{equation*}
$$

imply the stability properties I_{1} to I_{6} of the differential inequality (I) with respect to the trivial solution.

Proof. Let $u(t)$ be any solution of (1) such that $\mathrm{V}\left(t_{0}, u_{0}\right) \leq x_{0}$ and define

$$
m(t)=\mathrm{V}(t, u(t))
$$

then $m\left(t_{0}\right) \leq x_{0}$ and for small $h>0$,

$$
\begin{align*}
m(t+h) & -m(t)=\mathrm{V}(t+h, u(t+h))-\mathrm{V}(t, u(t)) \tag{5}\\
& =\mathrm{V}(t+h, u(t+h))-\mathrm{V}(t+h, \mathrm{R}[h, \mathrm{~A}(t)] u+h f(t, u)) \\
& +\mathrm{V}(t+h, \mathrm{R}[h, \mathrm{~A}(t)] u+h f(t, u))-\mathrm{V}(t, u) \\
& \leq \mathrm{L}\|u(t+h)-\{\mathrm{R}[h ; \mathrm{A}(t)] u+h f(t, u)\}\| \\
& +(\mathrm{I} \mid h)\{\mathrm{V}(t+h, \mathrm{R}[h ; \mathrm{A}(t)] u+h f(t, u)-\mathrm{V}(t, u)\}
\end{align*}
$$

Since for every $u \in \mathrm{D}(\mathrm{A}(t), \mathrm{R}[h ; \mathrm{A}(t)][\mathrm{I}-h \mathrm{~A}(t)] u=u$, it follows that
(6) $\mathrm{R}[h ; \mathrm{A}(t)] u=u+h \mathrm{~A}(t) u+h\{\mathrm{R}[h ; \mathrm{A}(t)] \mathrm{A}(t) u-\mathrm{A}(t) u\}$.

Using (5) and (6),

$$
\begin{aligned}
\frac{m(t+h)-m(t)}{h} & \leq \mathrm{L}\left\|\frac{u(t+h)-u(t)}{h}-\{\mathrm{A}(t) u+f(t, u)\}\right\| \\
& +\mathrm{L}\|-\mathrm{R}[h ; \mathrm{A}(t)] \mathrm{A}(t) u+\mathrm{A}(t) u\| \\
& +(\mathrm{I} \mid h)\{\mathrm{V}(t+h, \mathrm{R}[h, \mathrm{~A}(t)] u+h f(t, u)-\mathrm{V}(y, u)\}
\end{aligned}
$$

Using the differential inequality (I), the assumptions (iii) and (v) and the monotonic character of $g_{1}(t, x)$ in x, we obtain

$$
\begin{aligned}
\mathrm{D}^{+} m(t) & \leq \mathrm{L} g_{1}(t,\|u\|)+\mathrm{D}^{+} \mathrm{V}(t, u)_{(2)} \\
& \leq \mathrm{L} g_{1}\left(t, b^{-1}(\mathrm{~V}(t, u))\right)+g_{2}(t, \mathrm{~V}(t, u)) \\
& =\mathrm{L} g_{1}\left(t, b^{-1}(m(t))\right)+g_{2}(t, m(t)) \\
& =g(t, m(t))
\end{aligned}
$$

An application of Theorem 1.4.I of [2] yields

$$
\begin{equation*}
\mathrm{V}\left(t, u(t) \leq r\left(t, t_{0}, x_{0}\right) \quad \text { for } \quad t \geq t_{0}\right. \tag{7}
\end{equation*}
$$

where $r\left(t, t_{0}, x_{0}\right)$ is the maximal solution of (3) existing for $t \geq t_{0}$.
Now suppose I_{1}^{*} holds. Let $\varepsilon>0$, and $t_{0} \in \mathrm{R}^{+}$be given, then for $b(\varepsilon)>0$ there exists $\delta=\delta\left(t_{0}, \varepsilon\right)>0$ such that $x_{0} \leq \delta$ implies

$$
\begin{equation*}
x\left(t, t_{0}, x_{0}\right)<b(\varepsilon) \quad \dot{t} \geq t_{0} \tag{8}
\end{equation*}
$$

where $x\left(t, t_{0}, x_{0}\right)$ is any solution of (3). The local Lipschitzian property of $\mathrm{V}^{\prime}(t, u)$ in u for constant $\mathrm{L}>0$ implies that

$$
\mathrm{V}\left(t_{0}, u_{0}\right) \leq \mathrm{L}\left\|u_{0}\right\|, \quad \text { since } V(t, 0)=0
$$

So choose $x_{0}=\mathrm{L}\left\|u_{0}\right\|$, then $\mathrm{V}\left(t_{0}, u_{0}\right) \leq x_{0}$ and if we set $\delta_{1}\left(t_{0}, \varepsilon\right)=$ $=\frac{\delta\left(t_{0}, \varepsilon\right)}{L}$, then,

$$
\left\|u\left(t, t_{0}, u_{0}\right)\right\|<\varepsilon \quad t \geq t_{0}
$$

provided $\left\|u_{0}\right\| \leq \delta_{1}\left(t_{0}, \varepsilon\right)$ where $u\left(t, t_{0}, u_{0}\right)$ is any solution of (I). Suppose not; then for some $t_{1} \geq t_{0}$, we have

$$
\left\|u\left(t_{1}, t_{0}, u_{0}\right)\right\|=\varepsilon \quad \text { and } \quad\left\|u\left(t, t_{0}, u_{0}\right)\right\| \leq \varepsilon \quad \text { for } t \in\left[t_{0}, t_{1}\right]
$$

Hence by (7)

$$
b(\varepsilon) \leq \mathrm{V}\left(t_{1}, u\left(t_{1}\right)\right) \leq r\left(t_{1}, t_{0}, x_{0}\right)<b(\varepsilon)
$$

which is a contradiction. So that I_{j} holds for the differential inequality (I).

Suppose I_{3}^{*} holds, then let $\varepsilon>0, t_{0} \in R^{+}$be given; then \exists positive numbers $\delta_{0}=\delta_{0}\left(t_{0}\right)$ and $\mathrm{T}=\mathrm{T}\left(t_{0}, b(\varepsilon)\right)=\mathrm{T}\left(t_{0}, \varepsilon\right)>0$ such that $x_{0} \leq \delta_{0}$ implies

$$
\begin{equation*}
x\left(t, t_{0}, x_{0}\right)<b(\varepsilon) \quad \text { for } \quad t \geq t_{0} . \tag{9}
\end{equation*}
$$

Since $V\left(t_{0}, u\right)$ is continuous and $V\left(t_{0}, o\right)=0$, there exists a $\delta_{1}=\delta_{1}\left(t_{0}, \delta_{0}\right)<\delta_{0}$ such that $\left\|u_{0}\right\|<\delta_{1}$ implies $\mathrm{V}\left(t_{0}, u_{0}\right)<\delta_{0}$. Now let $\left\|u_{0}\right\|<\delta_{1}$ and $t \geq t_{0}+\mathrm{T}$, then

$$
b\left(\left\|u\left(t, t_{0}, u_{0}\right)\right\|\right) \leq \mathrm{V}\left(t, u\left(t, t_{0}, u_{0}\right)\right) \leq r\left(t, t_{0}, x_{0}\right)<b(\varepsilon)
$$

and so $\left\|u\left(t, t_{0}, u_{0}\right)\right\|<\varepsilon$ for $t \geq t_{0}+\mathrm{T}$, which is I_{3}. By choosing δ and T appropriately and combining the results for I_{1} and I_{3} the rest of the proof can be constructed on the basis of the inequality (7). By choosing δ and T independent of $t_{0} \mathrm{I}_{2}^{*} \mathrm{I}_{4}^{*}$ and I_{6}^{*} imply $\mathrm{I}_{2} \mathrm{I}_{4}$ and I_{6}.

In the next theorem we give a set of conditions for the stability properties of the differential inequality (1) in terms of several Lyapunov functions, since using several Lyapunov functions is more advantageous and leads to a more flexible mechanism. Moreover for several Lyapunov functions each function could satisfy less rigid requirements.

Theorem 2.6. Assume that

$$
\begin{aligned}
& \text { (i) } \mathrm{V} \in \mathrm{C}\left(\mathrm{R}^{+} \times \mathrm{S}_{\rho}, \mathrm{R}^{n}\right), \mathrm{V}(t, 0)=0 \text { and } \\
& \left\|\mathrm{V}\left(t, u_{1}\right)-\mathrm{V}\left(t, u_{2}\right)\right\| \leq \mathrm{L}\left\|u_{1}-u_{2}\right\|,\left(t, u_{1}\right),\left(t, u_{2}\right) \in \mathrm{R}^{+} \times \mathrm{S}_{\rho}
\end{aligned}
$$

where L is a constant;
(ii) $b(\|u\|) \leq \sum_{i=1}^{n} \mathrm{~V}_{i}(t, u), b \in \mathrm{~K},(t, u) \in \mathrm{R}^{+} \times \mathrm{S}_{\rho}$, and $\sum_{i=1}^{n} \mathrm{~V}_{i}(t, u) \rightarrow 0$ as $\|u\| \rightarrow 0$ for each $t \in \mathrm{R}^{+}$,
(iii) $g_{2} \in \mathrm{C}\left(\mathrm{R}^{+} \times \mathrm{R}^{n}, \mathrm{R}^{n}\right), g_{2}(t, 0)=0, g(t, x)$ is:-quasi-monotone nondecreasing in x for each $t \in \mathrm{R}^{+}$and

$$
\mathrm{D}^{+} \mathrm{V}(t, u)_{(2)} \leq g_{2}\left(t, \mathrm{~V}(t, u) \quad(t, u) \in \mathrm{R}^{+} \times \mathrm{S}_{p} ;\right.
$$

(iv) $g_{1}(t, o)=0$ and $g_{1}(t, x)$ is quasi-monotone nondecreasing in x for each $t \in \mathrm{R}^{+}$;
(v) For each $t \in \mathrm{R}^{+}$, all $h>0$ (h small) the operator $\mathrm{R}[h, \mathrm{~A}(t)]$ exists as a bounded operator defined on Y and for each $u \in \mathrm{Y}$.

$$
\lim _{h \rightarrow 0} \mathrm{R}[h, \mathrm{~A}(t)] u=u
$$

Then the stability properties $\mathrm{I}_{1}^{*}, \mathrm{I}_{3}^{*}$ and I_{5}^{*} of the trivial solution of the auxilliary differential system

$$
\begin{equation*}
\frac{\mathrm{d} w}{\mathrm{~d} t}=g(t, w) \tag{Io}
\end{equation*}
$$

with

$$
g(t, w)=\mathrm{L} g_{1}\left(t, b^{-1}(w)\right)+g_{2}(t, w)
$$

and maximal solution $r\left(t_{1}, t_{0}, w_{0}\right)$ existing for $t \geq t_{0}$, imply the stability properties $\mathrm{I}_{1}, \mathrm{I}_{3}$ and I_{5} of the trivial solution of the inequality (I).

Proof. Let $u(t)=u\left(t, t_{0}, u_{0}\right)$ be a solution of (1) such that $\mathrm{V}\left(t_{0}, u_{0}\right) \leq w_{0}$ and define the vector function

$$
m(t)=\mathrm{V}\left(t, u\left(t, t_{0}, u_{0}\right)\right) \quad t \geq t_{0}
$$

Proceeding as in the last theorem together with the assumptions we obtain

$$
\mathrm{D}^{+} m(t) \leq g(t, m(t)) \quad \text { for } \quad t \geq t_{0}
$$

An application of corollary I.7.1 of [2] yields

$$
\begin{equation*}
\mathrm{V}\left(t, u\left(t, t_{0}, u_{0}\right)\right) \leq r\left(t, t_{\mathbf{0}}, w_{0}\right) \quad \text { for } \quad t \geq t_{0} \tag{II}
\end{equation*}
$$

Suppose I_{1}^{*} holds. Let $\varepsilon>0$ and $t_{0} \in \mathrm{R}^{+}$, then for $b(\varepsilon)>0$. There exists $\delta=\delta\left(t_{\mathbf{0}}, \boldsymbol{\varepsilon}\right)>0$ such that $\sum_{i=1}^{n} w_{i 0} \leq \delta$ implies

$$
\begin{equation*}
\sum_{i=1}^{n} w_{i}\left(t, t_{0}, w_{0}\right)<b(\varepsilon) \quad t \geq t_{0} \tag{I2}
\end{equation*}
$$

where $w\left(t, t_{0}, w_{0}\right)$ is any solution of (IO) for $t \geq t_{0}$.
Choosing $w_{i 0}=\mathrm{V}_{i}\left(t_{0}, u_{0}\right) i=\mathrm{I}, 2, \cdots, n$, using the hypothesis (ii) and proceeding as in Theorem 2.5, the we obtain I_{1} for the differential inequality (1).

Suppose I_{3}^{*} holds then let $\varepsilon>0, t_{0} \in \mathrm{R}^{+}$be given, then there exist positive numbers $\delta_{0}=\delta_{0}\left(t_{0}\right)$ and $\mathrm{T}=\mathrm{T}\left(t_{0}, \varepsilon\right)>0$ such that $\sum_{i=1}^{n} w_{i 0} \leq \delta_{0}$ implies

$$
\begin{equation*}
\sum_{i=1}^{n} w_{i}\left(t, t_{0}, w_{0}\right)<b(\varepsilon), \quad t \geq t_{0} \tag{13}
\end{equation*}
$$

By hypothesis (ii) there exists a $\delta_{1}=\delta_{1}\left(t_{0}, \delta_{0}\right)<\delta_{0}$ such that

$$
\left\|u_{0}\right\| \leq \delta_{1} \quad \text { implies } \quad \sum_{i=1}^{n} \mathrm{~V}_{i}\left(t_{0}, u_{0}\right)<\delta^{0}
$$

Now let $\left\|u_{0}\right\| \leq \delta_{1}$ and set $w_{i 0}=V_{i}\left(t_{0}, u_{0}\right) i=1,2, \cdots, n$, then for $t \geq t_{0}+\mathrm{T}$,

$$
b\left(\left\|u\left(t, t_{0}, u_{0}\right)\right\| \leq \sum_{i=1}^{n} \mathrm{~V}_{i}\left(t, u\left(t, t_{0}, u_{0}\right)\right)<\sum_{i=1}^{n} r_{i}\left(t, t_{0}, w_{0}\right)<b(\varepsilon)\right.
$$

So $\left\|u\left(t, t_{0}, u_{0}\right)\right\|<\varepsilon$ for $t \geq t_{0}+\mathrm{T}$ which is I_{3}.

Theorem 2.7. Assume that hypothesis (i), (ii), (iii), (iv) and (v) of Theorem 2.6 hold and $\sum_{i=1}^{n} \mathrm{~V}_{i}(t, u) \rightarrow 0$ as $\|u\| \rightarrow 0$ uniformly in $t \in \mathrm{R}^{+}$.

Then the stability properties $\mathrm{I}_{2}^{*}, \mathrm{I}_{4}^{*}$ and I_{6}^{*} of the trivial solution of the auxiliary differential system (IO) with

$$
g(t, w)=\mathrm{L}_{1}\left(t, b^{-1}(w)\right)+g_{2}(t, w)
$$

and maximal solution $r\left(t, t_{0}, w_{0}\right)$ existing for $t \geq t_{0}$, imply the stability properties $\mathrm{I}_{2}, \mathrm{I}_{4}$ and I_{6} of the trivial solution of the differential inequality (I).

Proof. By choosing δ, δ_{1} and T of the last theorem independet of t_{0} the results can be established. We leave the details.

Theorem 2.8. In addition to the hypotheis (ii), (iii), (iv) and (v) of Theorem 2.5 assume that $\mathrm{V} \in \mathrm{C}\left(\mathrm{R}^{+} \times \mathrm{S}_{\rho}, \mathrm{R}^{+}\right) \mathrm{V}(t, 0) \equiv 0$ and

$$
\left|\mathrm{V}\left(t, u_{1}\right)-\mathrm{V}\left(t, u_{2}\right)\right| \leq \mathrm{L}(t)\left\|u_{1}-u_{2}\right\|
$$

where $\left(t, u_{1}\right),\left(t ; u_{1}\right),\left(t, u_{2}\right) \in \mathrm{R}^{+} \times \mathrm{S}_{\mathrm{p}}$ and $\mathrm{L}(t) \geq 0$ is a continuous function of t on R^{+}.

Then the stability properties $\mathrm{I}_{1}^{*}, \mathrm{I}_{3}^{*}$ and I_{5}^{*} of the trivial solution of (3) with

$$
g(t, x)=\mathrm{L}(t) g_{1}\left(t, b^{-1}(x)\right)+g_{2}(t, x)
$$

imply the stability properties $\mathrm{I}_{1}, \mathrm{I}_{3}$ and I_{5} respectively of the differential inequality (I), with respect to the origin.

Proof. Define

$$
m(t)=V\left(t, u\left(t, t_{0} u_{0}\right)\right) \quad t \geq t_{0}
$$

and proceed as in Theorem 2.5 to obtain the inequality

$$
\mathrm{V}\left(t, u\left(t, t_{0}, u_{0}\right)\right) \leq r\left(t, t_{0}, x_{0}\right) \quad \text { for } t \geq t_{0}
$$

With this inequality the remainder of the proof follows closely that of Theorem 5.7 .2 of [1].

Theorem 2.9. If in addition to the hypothesis of Theorem 2.8 we assume that there exist a function $\alpha: \mathrm{R}^{+} \rightarrow \mathrm{R}^{+}$such that $\alpha(r)$ is increasing in r and

$$
\mathrm{V}\left(t, u\left(t, t_{0}, u_{0}\right)\right) \leq \alpha(\|u\|)(t, u) \in \mathrm{R}^{+} \times \mathrm{Y}
$$

Then the stability properties $\mathrm{I}_{2}^{*}, \mathrm{I}_{4}^{*}$ and I_{6}^{*} of the trivial solution of (3) with

$$
g(t, w)=\mathrm{L}(t) g_{1}\left(t, b^{-1}(w)\right)+g_{2}(t, w)
$$

imply the stability properties $\mathrm{I}_{2}, \mathrm{I}_{4}$ and I_{6} respectively of the differential inequality (1) with respect to the origin.

Proof. Since

$$
\mathrm{V}\left(t, u\left(t, t_{0}, u_{0}\right)\right) \leq \alpha(\|u\|),(t, u) \in \mathrm{R}^{+} \times \mathrm{Y}
$$

then δ and T which would emerge in the proof of Theorem 2.8 can be chosen appropriately to be independent of t_{0}, so that the proof follows closely on the proof of Theorem 2.8.

Remarks. Our results contain many special cases. If $g_{1}(t, u)=0$, we obtain the stability results for the trivial solution of the abstract differential system (2) [1 , Theorem 5.7.2].

If $\mathrm{R}(t, u) \in \mathrm{C}\left(\mathrm{R}^{+} \times \mathrm{Y}, \mathrm{Y}\right)$ and for $\|u\|<\rho$,

$$
\|\mathrm{R}(t, u)\| \leq g_{1}(t,\|u\|),
$$

then we deduce from our results the stability properties of the trivial solution of the abstract system (2) with respect to permanent perturbations $\mathrm{R}(t, u)$.

If $\mathrm{R}(t, u)=\int_{t_{0}}^{t} k(t, s) g(s, u(s)) \mathrm{d} s, u\left(t_{0}\right)=u_{0}, \quad$ where $u \in \mathrm{Y}$, $g \in \mathrm{C}\left(\mathrm{R}^{+} \times \mathrm{Y}, \mathrm{Y}\right), g^{t_{0}}(t, 0) \equiv 0, k(t, s) \in \mathrm{C}\left(\mathrm{R}^{+} \times \mathrm{R}^{+}, \mathrm{R}^{+}\right)$and $\int_{i_{0}}^{t} k(t, s) \|$ $g(s, u(s)) \| \mathrm{d} s \leq g_{1}(t,\|u\|)$, the uniform asymptotic stability result of the trivial solution of the integro differential system

$$
\begin{equation*}
\frac{\mathrm{d} u}{\mathrm{~d} t}=\mathrm{A}(t) u+f(t, u)+\int_{t_{0}}^{t} k(t, s) g(s, u(s)) \mathrm{d} s, \quad u(t)=u_{0} \tag{**}
\end{equation*}
$$

discussed in [3, Theorem 2] is a special case of our Theorem 2.5. We also note that other stability properties of the system (**) could be deduced from our results in Theorems 2.5,2.6, 2.7, 2.8 and 2.9. Such stability results are new and analogous to the corresponding results for integrodifferential systems ${ }^{* *}$) in Euclidean spaces.

The following theorem gives a set of conditions under which every solution of the differential inequality (I) tends to zero as $t \rightarrow \infty$.

Theorem 2.Io. Assume that hypotheses (i), (ii), (iii), (iv) and (v) of Theorem 2.5 hold. Assume that the solutions $x\left(t, t_{0}, x_{0}\right)$ of (3) with $g(t, x)$ given by (4) for $0 \leq x_{0} \leq \beta$ have the property that

$$
\lim _{t \rightarrow \infty} x\left(t, t_{0}, x_{0}\right)=0 .
$$

Then every solution of the differential inequality (I) starting in the set

$$
\mathrm{A}=\{u \in \mathrm{Y}: \mathrm{V}(t, u) \leq \beta, t \geq 0\},
$$

tends to zero as $t \rightarrow \infty$.

Proof. Let $u\left(t, t_{0}, u_{0}\right)$ be any solution of the inequality (I) such that $u_{0} \in$ A. Define

$$
m(t)=\mathrm{V}(t, u(t))
$$

By repeating the same types of algiments as in Theorem 2.5,

$$
\mathrm{D}^{+} \mathrm{V}(t, u(t)) \leq g(t, \mathrm{~V}(t, u(t))), \quad t \geq t_{0}
$$

for $(t, u) \in \mathrm{R}^{+} \times \mathrm{Y}$ and so again

$$
\mathrm{V}\left(t, u\left(t, t_{0}, u_{0}\right)\right) \leq r\left(t, t_{0}, \beta\right), \quad \text { for } t \geq t_{0}
$$

where $r\left(t, t_{0}, \beta\right)$ is the maximal solution of (3) with $x_{0}=\beta$. Hence

$$
b\left(\left\|u\left(t, t_{0}, u_{0}\right)\right\|\right) \leq \mathrm{V}\left(t, u\left(t, t_{0}, u_{0}\right)\right) \leq r\left(t, t_{0}, \beta\right)
$$

Since $\lim _{t \rightarrow \infty} r\left(t, t_{0}, \beta\right)=0, b\left(\left\|u\left(t, t_{0}, u_{0}\right)\right\| \rightarrow 0\right.$ as $t \rightarrow \infty$. Hence $\left\|u\left(t, t_{0}, u_{0}\right)\right\| \rightarrow 0$ as $t \rightarrow \infty$.

REFERENCES

[1] G. E. Ladas and V. Lakshmikantham (1972) - Differential Equations in Abstract Spaces, No. 85, Mathematics and Science in Engineering, Accademic Press, New York.
[2] V. Lakshmikantham and S. Leela (1969) - Differential and Integral Inequalities,Vol. I, Mathematics and Science in Engineering No. 55, Academic Press, New York.
[3] B. G. PaChpatte (1976) - On the stability and asymptotic Behaviour of solutions of integrodifferential Equations in Banach spaces, "Journal of Maths. Analysis and Applications», 53, 604-617.

