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G eom etria  d ifferen zia le . -— The projective geometry o f the Wey I 
spinor. N ota  di J o s e p h  Z u n d , p re s e n ta ta <*> dal Socio G . S a n s o n e .

SUMMARY. — See the Introduction.

In t r o d u c t io n

In this note the eigenbispinors of the Weyl spinor are studied and 
interpreted using projective geometry. It is shown that the author’s strong 
form of the Bel-Petrov classification can be represented in terms of a set 
of lines and a conic in the complex projective plane.

I. T h e  b iv e c t o r  h e x a d  a n d  b is p in o r s

In his study of the complex null tetrad =  {/^ n^y mP, Sachs 
has shown how to construct a bi vector hexad consisting of three self-dual and 
three anti-self-dual complex bivectors. These bivectors are defined by

U t*v =  2 m 1

( I . I ) = 2 / [tiwv]

W "  =  2 l lv- n
and

=  2 mv]

(1.2) =e 2 / t!X

TnIIIâ

respectively. In [1] it was shown that the complex null tetrad T f t corresponds 
to the spinor zweibein ZA =  {XA p,A} according to the scheme

(1-3)

with

T  <-> xA xx

p.A p,x ,

nP  <—> XA p,x 

nF p,A Xx

(1.4) sab — 2 [̂AM'B]

and Xa [aa =  1 ,

(*) Nella seduta del 13 gennaio 1979.
(1) Throughout this note we will employ the notation and terminology employed in 

in [1] and [2]. The latter paper contains a complete bibliography.
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We now determine the spinor version of the bivector hexad

^ v =  { u ^  v ^  w ^ , Ü ' v, r , W ' v} .

By using (1.3) and (1.4), the spinors corresponding to the self-dual bivectors are

t t AXBY - x y  a b  U =  U 8

(I.5) yAXBY _  -XŸ £AB

W a x b y = - x y £ AB

where we have defined

AB A B AB a ^ B  AB . ( A B )
(1 .6) U  ==   [L [L , V  — A A , W  == 2 X \L .

The spinors corresponding to (1.2) are merely the complex conjugates of those 
given in (1.5). Thus the set of symmetric spinors given in (1.6) constitute a 
basis of the space of undotted second order symmetric spinors. It will be 
convenient to call a second order symmetric spinor a bispinor. Hence we 
m ay say that the bi vector hexad defines a pair of bispinor triads
ZAB == (^AB, z>AB, wAB} and IfF1 =  These bispinors satisfy
the properties

AB AB AB AB
U A B U  =  V AB V =  U A B W  — v A B w  = 0

(1.7)'  ' '  AB T AB
U A B V =  ---- 1 , W A B W  . — 2

which are analogous to the orthogonality conditions of the tetrad .

2. T h e  b e l - P etr o v  c l a s sif ic a t io n  a n d  e ig e n b is p in o r s

In terms of the spinor zweibein ZA=  {XA, pt.A} the Weyl spinor may be 
expressed in the form

( 2 . 1)  ^ABCD =  ^ 0  f^A [AB [i*C [^D “  4  ^ 1  H*(A (Ab [Ac XD) +  6  ^*2 [i.(A fXB X c XD)

—  4 ^ 3  [A(a Xb Xc Xd> +  ^ 4  Xa Xb Xc Xd .

The complex coefficients T 0 , y¥ 1 , • • -, TP4 are called the Weyl coefficients and 
they determine the various Bel-Petrov types. This classification has been 
given in several forms, and the one presented below (which we call the strong 
fo rm  of the Bel-Petrov classification) is based on a detailed investigation of 
Cayley’s theorem [1], [2].

The strong form of the Bel-Petrov classification, based on the principal 
null direction /^, is as follows:

Type h  Y 0 = Y 4 =  o ,  Y , Y , Y , *  o with 3 Y 22 — 4 Y X x¥ a *  o and

Yj — 2 'Yt Y , # 0 .
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Type IT. T 0 =  vF1 =  o , 'F 2:  ̂ o with either Y 3 =  o, o or Y 3^£o,

xh 4 - o. (These will be called Types H a  and II b respectively) 

T y pe D :  Y 0 =  %  =  Y 3 =  Y 4 =  o , Y , #  o .

Type I I I :  Y 0 =  =  T1, =  XF4 =  o , Y 3 *  o .

Type N: Y 0 -  Y 1 =  Y 2 =  Y 3 =  o , Y 4 o .

Type o: Y 0 =  Y , =  Y 2 =  Y 3 == Y 4 =  o (8).

In terms of the co variant form of the bispinor triad ZAB, the Weyl spinor
(2.1) m ay be re-expressed in the bispinor form

( 2 .2 )  4  ̂A BCD =  ^ o ^ A B ^ C D  T* (^ A B  ^ C D  ^ A B  ^ C d )

H” ^ 2  (  ^ A B ^ C D ---- ^ A B  ^CD +  ^ A B  ^ C d )

^ 3  (^ A B  W q d  +  Z^AB ^CD) +  ^ 4  ^ A B  ^CD •

We now seek eigenbispinors of ^ ABCD , viz bispinors >èAB such that

(2 .3) ' +ABcd ^CD =  A.^AB

where A is a scalar which m ay or may not vanish. Thus by use of (1.7) and 
(2.2) it is easy to verify that

t AB CD \ti* AB vr/» AB  
V CD U  . =  t 2 U  —  XF 4 V

/  \  » AB CD vr/» AB I vr/» AB vr/* AB(2.4) 4 CD ^ =  T 0u + ' r 2v —
I AB CD \ t/» AB I it/» AB it« AB4 C D ^  =  ---2 T j^  Jr 2 yt z V — 2 X¥ 2W .

Examination of these equations together with the conditions for the various 
Bel-Petrov types yields the following classification in terms of eigenbispinors 
of the Weyl spinor.

T h e o r e m .

The strong form  of the Bel-Petrov classification defines the following eigen­
bispinors and eigenvalues'.

Type /: Eigenbispinor'. u AB ; Non-zero eigenvalue'. XF2.

Type l i a : Eigenbispinors'. vAB, w AB ; Non-zero eigenvalues'. — 2T‘2.

Type IIb\ Eigenbispinors'. w ABy vAB ; Non-zero eigenvalues'. 'F2 ,XF2 .
AB AB » tType D: Eigenbispinors'. u , v , w  ; Non-zero eigenvalues'.

Y 2) Y 2 ) - 2 Y 2 .

(2) Note that Type o has vJjabcd =  o, and is included here only for purposes of formal 
completeness. We will always assume that our spacetime is not of Type o.
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Type I  IT. Eigenbispinors\ u AB, vAB ; Zero eigenvalues.

Type N: Eigenbispinors'. vAB, w AB ; Zero eigenvalues.

Penrose has illustrated the Bel-Petrov classification in terms of principal 
null directions bu the following diagram (Fig. i) in which the arrows denote 
the repeated coincidence of the principal null directions.

I I - ---------->D

Z
O- ->N<-

Fig. I

III

The Bel-Petrov classification in terms of eigenbispinors given in the 
previous theorem may also be summarized in diagram form. This classifi­
cation is illustrated in Fig. 2 where non vertical arrows indicate the decrease 
in the number of eigenbispinors (which preserves the eigenvalues involved) 
and vertical arrows indicate a specialization (which preserves the eigenbispinors) 
requiring that the non-zero eigenvalues vanish.

y
, / d \

\
/

Ha lib,1I
i

1
i

N III

V

Fig. 2.

3. T h e  p r o je c t iv e  g e o m e t r y  of t h e  b is p in o r  c l a s sif ic a t io n

Let P2 (C) denote the complex projective plane. There are two ways of 
geometrically visualizing the classification indicated in the theorem of Sec­
tion 2. The first approach is derived by using the Pliicker spinor

s ,AXBY AB XY , —XY AB
(3*0 P =  P s + P  e ,

where pAB is a bispinor, introduced in [1], satisfying the condition

(3-2) AB
PAB P

which is the spinor analogue of PliickeFs quadratic condition. The condition 
(3.2) is identically satisfied by the eigenbispinors, and if we replace the Pliicker 
bispinor in (3.1) by ^ AB, ^ABand w AB respectively, then we define three lines in
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P2 (C). We then say that such a line is proper if the corresponding eigenbi- 
spinor of the Weyl spinor admits a non-zero eigenvalue, and improper if 
the corresponding eigenvalue is zero. The line defined by u AB is denoted 
by u , and similar language is used for the bispinors vAB and w AB. Hence the 
Bel Petrov classification defines the following sets of lines in P2 (C).

Type /: 

Type H a : 

Type l i b : 

Type D\ 

Type I  IT. 

Type N:

One proper line u 

Two proper lines v and w  

Two proper lines u  and v 

Three proper lines u , v and w  

Two improper lines u and v 

Two improper lines v and w.

The second approach involves interpreting a bispinor x AB with components 
(x 11, X12 =  x 21, x 22) as representing a point in P2 (C) with the complex homo­
geneous coordinates (X°, X 1, X2). A conic Q in P2 (C) is the quadratic locus 
of points

\  7 AB CD(3.3) ^ABCD* X = 0

where ^abcd =  £ac £ b d - The conic ti is non-degenerate and (3.3) is of the 
explicit form

(3-4) * A B  *AB =  2 (X° X2 —  (X 1)2) #  o .

We now assume that P2(C) admits a conic Q as defined above but that x AB 
is not one of the eigenbispinors of ^ ABcd •

The equation (2.3)'.m ay be interpreted as representing a projectivity 
in P2 (C). Then an equation of the form

/  I AB CD vr/» AB(3-5) y  C D U  =  T 2 U

(which occurs in Types I and D) may be regarded as defining an invariant 
point U of the projectivity <|/ABcd . Likewise an equation of the form

/  _ ; I AB CD  (3.6) ip C D U  =  O

(which occurs in Types III) may be regarded as defining a variable point 
U of the projectivity ^ ABcd- Note that by virtue of (1.7) and (3.4) the point U 
lies on the conic Q. Hence (3.5) defines an invariant point on Q while (3.6) 
defines a variable point on Q. Note that the bispinor vAB also defines a point 
on Q , but w AB corresponds to a point not on Q and we m ay regard W be 
either external or internal to Ci , and we chose it to be external to O.
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These considerations allow us to give the following geometric realizations 
of the theorem proven in Section 2;

Type I : One invariant point U  on Û

Type I l a : Two invariant points V and W. V lies on £2 and W is external 
to £2 .

Type l i b : Two invariant points U and V both on £2. Hence the eigen-
spinors define an invariant chord of £2.

Type D : Three invariant points U , V and W. U and V are on £2,
W is external to £2. Hence the eigenbispinors dehne an 
invariant triangle, one side of which is an invariant chord 
of £2 .

Type I  IT. Two variable points U and V on £2. Hence the eigenbi­
spinors dehne a variable chord of £2.

Type N: Two variable points V and W. V is on £2 , W is external
to £2 .

Thus the strong form of the Bel-Petrov classihcation defines six distinct 
geometric conhgurations in P2 (C). Notice by virtue of the linear independence 
of the bispinors in the triad ZAB none of these points can coincide.
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