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Equazioni differenziali ordinarie. — On partial stability and
boundedness of degree . Nota di OLusoLA AKINYELE, presentata ¢
dal Socio G. SANSONE.

RIASSUNTO. — L’Autore da le definizioni di parziale stabilita e limitatezza di grado 4,
e da condizioni sufficienti perche un sistema differenziale abbia queste proprieta.

§ 1. INTRODUCTION

Lyapunov [4] posed the problem of the stability of motion with respect
to a part of the variables, otherwise known as partial stability. Ever since
several authors [1, 2, 3, 5, 6, 8] have validated the possibility of applying
the theorems of Lyapunov’s second method including their modifications
and generalizations for this specific problem.

In this paper, by employing Lyapunov—like functions and the theory
of systems of differential inequalities, we develop a new comparison theorem
and introduce new concepts of stability and boundedness of solutions of a
differential system in Euclidean spaces, with respect to a part of the variable
We then investigate sufficient conditions for such stability and boundedness
properties to hold.

§ 2. PRELIMINARIES AND DEFINITIONS

We consider a system of differential equations

de '
(1) “azf(f:m) y JEo)=0 o) =a,
where fe C (R*xXR?, R"*). Here R+ denotes the non-negative real line, R* the
Euclidean space and ||-|| any convenient norm.

Let w;, 0, -+, 0, (m > o0) be a part of the variables (&, wy,- -, w,)
and w =m +p,p >0 Letx;=w;(¢=1,2,---,m) and the rest of the
variables be ¥, = wy;, (j=1,2, -, n—m = p). Then

W = <x1?x2""1xmyy11y2v""yp>
and
m 2 12 » 9 1/2
[l = (lei) o lyll= (Zlyf)
t== 9=

(*) Nella seduta del 16 dicembre 1978.



260 Lincei — Rend. Sc. fis. mat. e nat. — Vol. LXV - dicembre 1978

and ’
n 1/2
fell = (; @f) xEy

Define for ¢ > 0,5, ={we R*:|x]| <p,0 <[y <oo,z=>0} We as-
sume that the solutions of (1) are y-component extendable, that is, any
solution o (#) is defined for all # > o for which ||z || < p. We also assume
conditions on f which guarantee existence and uniqueness of solutions of (1).

DEFINITION 2.1. Denote by 2, the set of all continuous functions ¢
defined on R* which are monotonically increasing and differentiable in R+
and such that

() =1 for 0o <t <co and lim ¢ (&) =6 >1
t—>o0

where 4 is a real number.

The purpose of this paper is to develop the partial stability and bounded-
ness properties of degree £ with respect to ¢ for the system (1). These
properties are now defined.

DEFINITION 2.2. The trivial solution @ = o of (1) is said to be: PN;:
equistable of degree £ with respect to ¢ relative to o, , &, ,- - -, &, or partially
equistable of degree £ with respect to ¢ if given € > 0, 7€ R+ there exist

= 3 (¢, 7, and ¢€ D such that every solution e (¢, 7,, w,) of (1) satisfies,

QPO x (2,2, 00)ll <e, for £=1¢,

provided || §% (2,) w4 < 3.

PN,: partially uniformly stable of degree £ with respect to ¢ if 3 in (2)
is independent of ¢,

Corresponding to the definitions (5,)-(Sg) of [3] we can formulate
(PN)—(PNy).

Remark. 1f ¢ (¢£) =1, then our definitions (PN;)-(PNg) reduce to the
definitions (P)—(Pg) of [3, §3.11], that is, partial stability notions of
system (1). If 2= 1, our definitions reduce to the concepts of partial
stability with respect to the function ¢, which are also new. If m = #» and
¢ () = 1, then our definitions (PN;)-(PNy) reduce to the definitions (S;)—(Sg)
of [3]. .

Analogous to the definitions (PN,)-(PNg) we may formulate definitions
of partial boundedness of solutions of (1) of degree £ with respect to ¢ on
the basis of definition 2.2 and corresponding definitions (B,)—(Bg) of [3,
§ 3.13]. These considerations are straightforward and the reader may formu-
late them by himself.

Corresponding to the given differential system (1), we shall consider
the scalar differential equation

@ S—ptw) , wl)=ue>o

where ge C (R*XR*, R).
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§ 3. MAIN RESULTS

We now state and prove a variant of the standard comparison theorem
which is the main tool of this paper.

THEOREM 3.1 (&% degree Comparison Theorem). Assume that

(i) Ve CR+x R RY) , V (¢,x) is locally Lipschitzian in x for each
te R+

(i) ge C(R*XR*, R) , g (¢, u) is nondecreasing in wu for each te R¥,
and the maximal solution v (¢, ty,7y) of the scalar differential equation (2)
exists to the right of t;

(iii) & () 4s a comtinuous function whick is monotonically increasing
and differentiable in the interval [0, o) and the conditions

b =1 , o0=<t<oo , limo@E=c=>1
hold. t—>oo0

(iv) For £=>1 and (¢,* (£)x (#))e R+ xR*,
DrV (56 x () =g,V V¢, 6 @Orx X))

Then if o (t,2,,w,) is any solution of (1) existing for t =>1t, such that
V (t,, % (ty) ©o) <7y, then

\/<t!¢k<t>m<t’t0’w0>>Sr<l’toyro) ) ZZZ(O'
Proof. For ¢t > ¢, define

m(6) =V (¢, ¢ @) e @),

then

mt k) —m@=V+hFE+hol+m—VeE, @@
=V(E+h, 3¢ +Rol+hr)—
—V@E+AFCTD) 0@+ DM E, @)
FV @A B h) o @) + &+ B E, o)
—V &, ¢ Oe@).

SLE+BIGFE+RoE+H —dE+ho@B —0@E+niFE ol
FVEF AR @)+ E )
—V@E, ¢F@Re@).
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m ¢+ k) —m () ot +hih)—el)
% %

§L<t+/z>¢k<z+/z)H f(z‘,w)“

o V@A, R 0@+ I, ) —

—V{, 65 @) 0 @)]
Using (iii)
Dtm @) <DV, Qo) <gt,m@) , =4
An application of Theorem 1.4.1 of [3] therefore implies
Vi, 08 @) o (#, 1y, 0) <r(t,t, ) for 2>1¢,.

Remark. Our result obviously contains the well-known comparison
theorem. All that is required to verify this is to set ¢ (!) =1 for all # in
Theorem 3.1. This result thus generalises the usual comparison one.

We now state another variant of our comparison result.

THEOREM 3.2. Suppose the hypothesis of Theovem 3.1 hold except that
instead of () we assume that for &k > 1.

DEVEFOe@) + 00U Oe@O) =@, VE, F@Oe@®),

for (2,68 (@) o (£))e R*XR?, where O (u) = o0 is continuwouns for u > o,
D (0) = 0 and O (u) is strictly increasing in u. Assume in addition that g (¢ , )
s mondecreasing in u for each te Rt. Then V (¢, 0% (t)) wo) <#y implics

that
t

V(L6 () o @) —:—f<1><n¢k<s>co<s>n>dssw,fo,ro)

%

Jor t > ¢,
Probf. Define

m(@&) =V, &) o@)+ f ® (|4 (5) o (s)) ds

and proceed as in the last theorem and the result follows.

We now use our comparison result to investigate sufficient conditions
for the partial stability and boundedness of degree 4, with respect to the
function ¢.

THEOREM 3.3. Assume that there exist V (t, w) and g (t,u) satisfying
the following:

(i) ge C(R*XR* R),g (¢,0) =0, and g (¢, u) is nondecreasing in u
for eack te R, :
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(i) Ve C(R+* XS, , R,V (¢,0) =0,V (¢, w) is locally Lipschitzian
in w, and there exists ac A = {beC([o,0),R),d(0) =0 and ¢ (») is
strictly monotone increasing in v}, suck that

alF@xl) SVE, PR o@) for (¢, () o)e R*XS,

where S, = {we R || o || < o} and $ (¢) is the function defined in Theorem 3.1
(ii).
(iii) For k=1, and (¢,9* (#) » (¥))e RTXS,,
DV (£, 0" () o (@) =g,V (¢, 6 (&) o @)

where & ts a continnous function as defined in Theorem 3.1 (iii).

Then (i) the equistability of the trivial solution of (2) implies the partial
equistability of degree k with respect to the function b of the trivial solution
of (D).

(i) the equi-asymptotic stability of the trivial solution of (2) implies the
partial equi-asymptotic stability of degree k with respect to the function o of
the trivial solution of (1).

Proof. On the basis of our comparison result and the standard arguments
with obvious modifications the results follow [cfr. 3].

THEOREM 3.4. Assume that hypothesis (1), (i1) and (iii) of the last theovem
ho’d and that theve exists be X such that

Ve, ¥De@ S6ldF@e@l) @ e @)e RYXS,.

Then (i) the equistability of the trivial solution of (2) implies the partial
equi-stability of degree k with vespect to the function & of the trivial solution
of (1). |

(i) the uniform stability of the trivial solution of (2) implies the partial
uniform stability of degree k with respect to ¢ of the trivial solution of (1).

Progf. The proof runs parallel to that of Theorem 3.3.

THEOREM 3.5. Assume that hypothesis (i), (ii) and (iii) of Theorem 3.3
kold, and that there exist a,be X such that

a(lFOxH=VE,FQe@) <edxl+lxy).

Then (1) the equi-asymprotic stability of the trivial solution of (2) implies
the partial equi-asymptotic stability of degree k with respect to the function ¢
of the trivial solution of (1).

(ii) the uniform asymptotic stability of the trivial solution of (2) implies
the partial uniform asymptotic stability of degree k with respect to the function ¢
-of the trivial solution of (1).
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Proof. On the basis of the comparison result and routine standard
arguments the proofs are straightforward.

Remarf. If 2= 1, then Theorems 3.3, 3.4 and 3.5 give sufficient
conditions for the partial equistability, partial uniform stability and partial
uniform asymptotic stability with respect to the function ¢. If ¢ (¥) =1
and p» > o then the various partial stability results in Theorems 3.3, 3.4
and 3.5 reduce to the known partial stability results [cfr. 3]. In the special
case ¢ (#) = 1 and p = o, Theorems 3.3, 3.4 and 3.5 reduce to the Lyapunov
equistability, uniform stability and uniform asymptotic stability of the trivial
solution & = o of the system (1). In the special case ¢ (¢) = &0,z > 4,
B>0,B<aand g, Vi, ™™o @)=—aV (,d 0w @), our result of
Theotem 3.5 is equivalent to the partial exponential asymptotic stability
of the trivial solution of (1). For the definition of partial exponential
asymptotic stability, the reader is referred to [7, §1].

We can state and prove partial boundedness results (PB,~PBg) parallel
to Theorem 3.3, 3.4 and 3.5 on the basis of out £th degree comparison
result. However, these consideration are fairly straight-forward and so we
omit details.
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