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Analisi matematica. — FExistence of Solutions Across Resonance
in the Large for Semilinear Problems. Nota di P.]J. McKenna,
presentata ® dal Socio D. GRAFFI.

RIASSUNTO. — L’Autore considera 1’equazione astratta:
(1) Ex 4+ Axr = Nx

con E operatore lineare, N operatore non lineare, A parametro. Detti A, e 2; due successivi
autovalori di (1) (con N = o), e sotto opportune condizione per N, dimostra che esiste un
e > 0, tale che per Ap— & <A <A, la (1) ammette un insieme di soluzioni uniformemente
limitate.

INTRODUCTION

The study of the existence of solutions across resonance was introduced
by Cesari [1] where he studied the existence of solutions to equations of the
form Ex + ax = Nz, for small values of «, with suitable conditions on the
linear operator E at resonance and the nonlinear operator N. Again in the
framework of the alternative method, Mc Kenna [6, 7] and Cesari [2] showed
that similar theorems could be proved for equations of the type Ex 4-eNyx =
= Nx for sufficiently small ¢ and suitable nonlinear Nj.

In this paper, we adopt a different approach, and show that in the pre-
sence of a now well understood geometric condition on N, the equation Ex +
+ ax = Nz can be solved from as close to one eigenvalue as we desire to some
point across the next eigenvalue.

THE MAIN RESULT

Let ## be a Hilbert space, and let N be a continuous nonlinear bounded
map from # to #. We assume that E has a sequence of cigenvalues
N <X, -, A; > + oo with associated orthonormal eigenvectors ¢, .

If {d}m% are the eigenvalues associated with eigenvalue zero, X <

Ny <0 < Mpypyg <+ -+, then we define a partial inverse K on the space

of functions of the type

x=i£5¢i—|— 514), and Kx=2—cd>,—|~ Z
0

m-+k+ =0 +k+1 7\

(*) Nella seduta dell’8 gennaio 1977.
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If T—P is the orthogonal projection onto these functions z, then
K{A—P)s# —I—P)# is compact and since

m 1 o0
(Kx,x)zz)\—cf—!— Z —7\{—53 S0
o A miit1 A
I I
® Sl P < (K 0) < | [P
m +k+1
We assume
(Np) INx|| <M = for all xe#
(Ny) VR, > o0, IR, > o and 8:[o,o00)— (0, 00)

such that if
x0€ PH | x0ll = Ro ne(l—P)#,||lnl <R

then
(N (xo + 21) , 29) > 3 (| %4ll) > 0.

THEOREM 1. Under the foregoing general assumptions on E and the parti-
cular assumptions Ny) and Ny) on N, there exists wq << 0 so that for every
o, 0y < & < Apyprr, Phe equation

(2) Ex —oax = Nx

kas at least onz solution. Moreover for every ay,0 << oy << Mpippy Lhere exists
a uniformly bounded connected set of solutions for ae€ [oy, o).

Progf. We shall search for solutions (cfr, [2], [6] and [kIO]) of the coupled
equation
(3) o=x—{Pr—K{I—P)Nxr+aK{I—P)x—PNx—aPx}=T—T,)x.

We define a region Q in 3 so that dig(o,I—T, Q) is equal to one.
For any given oy, 0 < oy < Ayypi, let '

Q= {xg+2,,2€P# , 1e(I—=P)# [l x| <Ro, =] <R}
where R, and R, are chosen so that
@ Ry >2( —oyA\umd | K| M,

where M is the constant in (N,) and R, is then the corresponding constant
in (Ny). '

We shall determine below a4, A, < ®g <0, and show that for
€ [ag, ] I—2T)z5%0 for 2€3Q2 and o<A <1
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a) Consider z = xy + x|l %1l < Ry, ||2:]l = R;. Then
@ —ATy) 2, 2) = 2 [P—2A(KA—P)N (v 4 x9) , 2) — o (Kay , 7).
In the case where a <o

(@ —2Ty) z, %) = Ri— || K|| MRy + o || K[| R}
>Ry | KM + o | K| R

If |a| < M/2R,, then (I —2T,) 2, x) > 3.
In the remaining case where 0 <a < a; we have

@— ATz, 2) =[x |P—I K I} M| 20y At — ato/ Mo || 24 [P
> Ri— | K| MRy — b RIZ Ry K[ M,

the last inequality coming from (4).
Thus for «, sufficiently small, there exists 3 > o so that if z = x; + 2,
ol <Ry, |zl =Ry then (I—ATy)z,2) =38 for all 5, o<A<1.

6) We now consider z =%y + %, | %oll = Ro, |1 {| < Ry.
Then

(A—2Te) 2, x9) = (T — N[ %o P + A (N (%o + a1) , %o) + hot [| o [

Since (N (xy + %7), o) = 8 (| %, |) > 0 on this part of the boundary, taking
8, = 8(Ry) and |, | < 8;/2 R}, we have (I—2T,)z,xy) > 8, >0 for all
N o<i<I.

Thus the equations (I — T,)z = o have solutions in Q for all «, ay <
<o <oy

To establish the connectedness of a set of solutions, we need only quote
the following Theorem, which is a slight variation of one found in [9].

THEOREM A. Let F (¢, %) bz a continuwous compact map from [o,, a] X H
into K, swuch that dipg(I1—F(@#,%),0,Q) =1 for all telay, ], and
|F@,2)|| = 8 on oQ where Q is a bounded open set of #. Then there is a
connected set of points {(¢,x) |t€[ng, 0] ,2€Q,F (2,2) = 2} that meets both
{oo} XQ and {a} XQ.

Taking F (¢, 2) == T, #, it is clear that the theorem implies that there
exists a connected set of solutions x, to (I —T,)x =o0 for all ae [o,, &,].
This concludes the proof of the theorem.

The reader will observe that in the proof of the theorem, we showed that
for all o€ [ug, o] the inequality || (I-—2AT,)2||> 8 >0 held for all z¢ 3L,
A€o, 1]. This observation would allow us to include an additional nonlinear
term ¢N; in the equation Ex 4 ax = Nx 4 eN; (), with the assumption that
N,:4 — # maps bounded sets into bounded sets. Then for T, = Pxr—
— K{I—P)Nx + eN; ) —aK I —P)x — P(Nx + eN; ) — aPxr we
would have || (I —2aT,) 2|l > 8/2 and Theorem I would apply.
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In the event of the reverse inequality (Np) (N (x, + ) 29 <3 <o
being satisfied instead of (Ny), a slight modification of the proof of Theorem I
would yield.

THEOREM 1I. Under the previous assumptions on E and the assumptions
(Ny) and (Ny) on N, there exists ay> 0 so that for every o ,h, < o < o, the
equations Lx —oax = Nx has at least one solution.  Moreover, for every
0, Ay < 0y << 0O, there exists a connzcted uniformly bounded set of solutions for
a € [oy , o)

If only the inequality (Ny) (N (%, + #,), x,) = 0 is satisfied instead of
N,) the following result holds.

THEOREM 1II. Under the same general assumptions on E and assumptions
(N) (NY). on N, then for cvery o.,0 <o <Igin, the equation Ex — ax = Nx
has at least a solution x, e H. Moreover, for every a,0 < a < oy < Apirs1
the solutions x, are uniformly bounded, and there exists a connected subset of
the x,'s for a€(o,a).

Remarks. The connection between the geometric conditions N, , Ny, Ny’
and the conditions of Landesman and Lazer [4], Lazer and Leach [5], Wil-
liams [10], and others is now well understood [3]. The observation that the
Landesman and Lazer condition implies (N,) we first made by Williams
[10], and has been used extensively by Cesari [2], McKenna [6], and others.
dZ

d 2
[0, 27] and # is the space of 12 [0, 2 =], and Nx = £ (x) — % (¢), then as
Lazer and Leach [5], the condition N, is impled by

f(to)y=D , f(=o0)=C

2m

In particular if Ex = -+ m?® with periodic boundary conditions on

A:i_/ﬁa)sinmzdz :_1_/ /i (£) cos mt dt
27 27
0

0

and 2 (D —C) > (A? 4 B)"2,

In particular, if ||Z|| < D —C, then condition (N,) is satisfied uniformly
at each eigenvalue A; = 72 and thus all solutions of 4 x"/ 4 m?x =g (x) +
-+ 4 (¢), are bounded for m?e [0, R], with bound depending only on R.
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