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Geometria differenziale. — Constant mappings and common fixed
points. Nota di Brian FiIsHER, presentata ™ dal Socio B. SEGRE.

RIASSUNTO. — Si dimostra che, se S e T sono applicazioni di uno spazid metrico X
in sé tali che o ‘
d(Sx,Ty) <dd(y,Sx) +cd(y,Ty), (0o<d,c<1)
oppure
@Sz, TP <cd(y,S%)d(y,Ty), (0 <0

per tuttigli x,y di X, allora S e T hanno un unico punto fisso comune, z, ed inoltre Sx = z
per tutti gli x di X.

We first of all prove the following theorem:

THEOREM 1. [f S and T are mappings of the metric space X into itself
satisfying the inequality

d(Sx,Ty)y <bd(y,5%) +cd (¥, Ty)

Jor all x ,y in X, where 0 << b,c <1, then S and T have a unique common
frxed point z. Further, S is a constant mapping with Sx = z for all x in X.

Proof. If x is an arbitrary point in X, we have
d (Sx , TSx) < bd (Sx, Sx) + ¢d (Sx , TSx) = ¢d (Sx , TSx)

and, since ¢ < 1, it follows that

TSx = Sx .
Thus the point Sx = 2z is a fixed point of T. Further
d(Sz,2)=d Sz, Ts) <bd(z,52) +¢d(2,Ts) = 6éd (Sz, 2)

and, since 4 < 1, it follows that

Sz==z2.

Thus the point z is a common fixed point of S and T.
Now suppose that S and T have a second common fixed point w. Then

d(z,w)=d Sz, Tw) <bd(w,Sz) + cd(w, Tw) = bd (2 , w)

and, since 4 < 1, it follows that the common fixed point # must be unique.

(*) Nella seduta del 14 maggio 1977.
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We now note that, since the point # is unique and since the arbitrary
point # was mapped into 2, S must map every point x in X into z. This com-
pletes the proof of the theorem.

Although we have proved that S is a constant mapping, T is not neces-
sarily a constant mapping. To see this, let X be the set {o, 1, 3} with metric

d(r,n)=|r—mn|: r.m=0,1,3.
Define mappings S and T on X by
SE©=SM=5@=TO@=T{ =0, TE=1.

It is easily seen that the inequality of the theorem is satisfied with 6= ¢ =1,
but T is not a constant mapping.
The inequality is also satisfied when 4 =0,¢= % or when 6=3,c=0
and so T is not necessarily a constant mapping even if either 4 = o0 or ¢ = o.
In the particular case S = T, we of course have the following corollary:

COROLLARY. If T is a mapping of the metric space X into itself satisfying
the inequality, ‘ )

d(Tx,Ty) < bd(y,Tx) + cd (v, Ty)

Jor all x ,y in X, where 0 < b,c < 1, then T is a constant mapping.
We now prove the following

THEOREM 2. If S and T are mappings of the metric space X into itself
satisfying the inequality

{dSx, Ty)f <ecd(y,S0)d(y,Ty)

Jor all x ,y in X, where 0 < ¢, then S and T have a unique common fixed point z.
Further, S is a constant mapping with Sx = z for all x in X.

Proof. 1f x is an arbitrary point in X, we have
{d (Sx, TSx)}* < ¢d (Sx ,Sx)d (Sx , TSx) = o

and it follows that
TSx = Sx .

Thus the point Sx = 2 is a fixed point of T.
Further

{dSz,)={dSz,Te)}* <cd(2,52)d (z,Tz) = 0.

It follows that the point z is a common fixed point of S and T.
Now suppose that S and T have a second common fixed point w. Then
{d@,0)P={d Sz, Tw)}* <cd(w,Sz)d (w,Tw)=o0.

It follows that the common fixed point ¢ is unique and then that S maps every
point # in X into 2. This completes the proof of the theorem.
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The example given above, with ¢= 1, again shows us that T is not neces-
sarily a constant mapping. '
In the particular case S =T, we have the following:

COROLLARY. If T is a mapping of the metric space X into itself satisfying
the inequality

d(Tx, Ty <cd(y,Tx)d(y,Ty)

Jor all x ,y in X, where 0 < ¢, then T is a constant mapping.
We finally prove the following

THEOREM 3. [If S and T are mappings of the metric space X into itself
satisfying the inequality

d(Sx,Ty) <d(y,S%) +d (v, Ty)

Sor all x ,y in X, with Sx Ty, then S and T have a unique common fixed
point 2. Further, S is a constant mapping with Sx = z for all x in X.

Proof. Let x be an arbitrary point in X. Then if Sx = TSx, we have
d(Sx,TSx) <d(Sx,Sx) +d (Sx,TSx) = d (Sx, TSx),

giving a contradiction. It follows that the point Sx = # is a fixed point of T.
Now suppose that Sz 42 Then

d(S2,2) = d(Ss,Ts) <d(z,56) + d(s,Ts) = d (S2,32),

giving a contradiction. It follows that the point z is a common fixed point
of S and T.

If we now suppose that w is a second distinct common fixed point of S
and T, then

d(z,w):d(Sz,Tw)<d(w,Sz)+a’(w,Tw)=d(z,w),

giving a contradiction. It follows that the common fixed point z is unique
and then that S maps every point x in X into 2. This completes the proof of
the theorem.

In the particular case S = T, we have the following

COROLLARY. If T is a mapping of the metric space X intoitself satisfying
the inequality

d(Tx,Ty) <d(y,Tx) +d(y,Ty)

Jor all x,y in X, with Tx £ Ty, then T is a constant mapping.



