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Teorie relativistiche. —  Gravitational field  theory fo r  the con- 
timmm: convergence to general relativity <*>. Nota di G iancarlo 
S p in e l l i, presentata <**> dal Socio C. C attaneo .

RIASSUNTO. — Si mostra come il metodo iterativo con il quale si può costruire la teoria 
gravitazionale di campo per il continuo, converga alla relatività generale. Per fare ciò si con­
sidera dapprima la formulazione variazionale delle equazioni della relatività generale per il 
continuo e si ottiene di tale teoria la traduzione al secondo ordine nello spazio pseudoeuclideo. 
Dal confronto con il secondo ordine dell’approccio in teoria dei campi, si mostra come operi 
la rinormalizzazione dei metri e degli orologi. Per ottenere la convergenza dell’approccio 
iterativo, vengono eliminate le difficoltà, dovute ai vincoli che sono presenti nella formu­
lazione variazionale per il continuo, con opportune trasformazioni del potenziale gravita­
zionale.

i .  In t r o d u c t io n

In a preceding paper [1] the formal bases of a theory for the gravitational 
field generated by a continuum were given in the pseudo-Euclidean, “ unre­
normalized ” [2] space-time (i.e. in the space-time that would appear to an 
ideal observer using ideal rods and clocks, unaffected by gravity). In such a 
space-time gravity is represented by a second rank symmetric tensor potential 
4»aß. This field theoretical approach is iterative and the detailed calculations 
were given for the field equations to second order.

As Deser says [3], once the iteration is begun it must be continued to 
all orders. Indeed there is incosistency to each order between the field equations 
and the equations of motion. The consistency will be reached only when 
considering the full series.

As to the pure field terms, Deser has shown in a fundamental paper [3] 
the convergence to general relativity by implementing a linear action integral 
written in the Palatini form.

As to the m atter part, one usually applies the minimal prescription [4]. 
The action integral of the theory to which the method converges is obtained 
by substituting into the action integral of the case without gravity the fun­
damental metric tensor ga$ of the curved space-time for the fundamental 
metric tensor aaß of the flat space-time, where ga$ is given by at*ß — 2 / ^ aß.

Here it will be shown that such a procedure for obtaining the exact action 
integral relevant to the m atter is correct also for the continuum and gives 
the general relativity action integral. The difference with respect to the case

(*) Lavoro eseguito nell’ambito dell’attività del GNFM del CNR.
(**) Nella seduta del 15 giugno 1978.
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of point-like particles is the presence of constraints. In order to obtain the 
convergence in the presence of such constraints (generally changing to each 
order) it is convenient to compare the second step of the iteration procedure 
of the field theoretical approach with the second order approximation of 
general relativity. Once the identity of the two approximation has been 
recognized, it can be shown that by a proper transformation (different to each 
order) of the potentials, the problem can be reduced to the same formulation 
as for the point-like particles case.

2. General relativity

The equations of general relativity for a continuum can be written, in 
the Riemannian space-time,

(i) R«(3 — igaß  R =  — / 2 ([44U(3 +  S*ß) ,

where Raß is the contracted curvature tensor of the Riemannian space-time, i.e.

/ _ \  T)   ~ tt*X n ti*X , tt*X •p*Y -p*X p*Y(2 ) tCaß —• <?ß i aX X̂ aß ~f" ay 1 0X aß yX »

T*ß being the Christoffel symbols of the second kind, gaß is the fundamental 
metric tensor. The asterisk denotes quantities in the Riemannian space-time 
(if they have the same symbol in the pseudo-Euclidean space-time): (Jio is 
the proper density of proper mass, S«ß is the stress tensor, z** are the coordi­
nates of the m atter element, and z*a =  dz^ajds where ds* =  (gaß d^*“ d<s*ß)1/2. 

Equations (i) can be obtained by the variational principle

(3) »,(!*) =  o #

where the action integral is given by

(4) I* =  J ( R - 2 / W 4 ^

and d4 Q* =  f — g  dx *1 dx*2 dx*z dx*4* is the volume element of the Rieman­
nian space ((x*) being a general coordinate system)). The subscript under 
8 denotes the quantity which is varied.

Where m atter is present we can write d4 Q* — ds* dVo, dVo being the 
proper three-dimensional volume of the matter element; hence eq. (2) can 
be splitted into

(5) I* Rd4 a* f 2 [Xo dVo ds*.

When varying gaß we have a deformation tensor given fs] by 8^aß/2. 
Considering only adiabatic transformations, the energy balance gives that
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the variation of the energy contained in an infinitesimal proper volume is 
equal to the work done by the stresses, i.e.

(6) 8, ([4 dV?) =  — i  S*ß 8/ ß d V t

Moreover

(7) S ,( d /)  =  Î  **“ Ä*9 dj*,

and

(8) g y x  gx3 .

Taking into account eqs. (6), (7) and (8) the variational principle (3) 
with the action integral (5) gives eqs. (1).

3 Second order approximation

Equations (1) and (4) can be translated into the flat, pseudo-Euclidean 
space-time generalizing the Rosen procedure [6]. We have the following 
rules:

(9) <£ocß “  ôcß 2 )

where is the fundamental metric tensor of the pseudo-Euclidean space- 
time and 4>ap represents the gravitational potential. As to the proper density 
of proper mass, if we take the proper mass as invariant (in the translation), i.e.

(11) j ^ d V ^  ^„dVo,

we get
,  V *  dV0 d4 O d  s* ,  . jr7 ,?  . p  . V\
(12) N  =  v v w  Ho =  —  - -  Ho -  ( l +  fty  — Appv * * ) Ho >dV0 d4 Q* as

to second order accuracy (with respect to a parameter e if wet put $aß —
=

As to the translation of S«ß into the flat space-time we are not free to 
choose it. Indeed, let us recall [1] that in the flat space-time it is

( 13) ({*„ dV0) =  -  è Saß S«afl dV0 ,

and

(14) 85;( !x0dV0) = / S “ß 8^ d V 0 .

Because of (9) and (11) it has to be

(15) 8, (i4  dV t)  -  Sa (ix0 dV0) +  8  ̂ ((J.0 dV0) .
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Putting eqs. (6), (13), and (14) into eq. (15) and taking into account 
(9), gives

(16) s*“& d V t  =  Sa& dV0 ,

from which, to second order accuracy,

( I 7) Saß =  Saß ( I —  /<Kx S* +  / $ )  —  2 f î / \ a  Sß)X .

Let us now translate eqs. (i) by the rules (9), (10), (12) and (17), to second 
order accuracy. After some simplifications and substituting, whenever a 
d ’Alembertian multiplied by /  appears, the first order reduction of the same 
equations, we eventually obtain

(l8) D$a0 +  $;a0 --- $Y(a;ß)Y +  ^aß D $) ~

”  ($aß;pY T“ 4W;aß $p(oc;0)y) “f~ ;p ($y(<*;3) ôc0;y)

y ^ ’Y (4h(a;ß) $aß;Y) H“ 2f $ a ' y $ßY;p 2f$<x $ßY5P 

— / $ PT;a 4»py;3 +  «aß /  (— 2 $Xy;X #PY;p +  2 <p;X $Xy;y — £ $ ;X —

—  $ Xp,Y $XY;p +  3/2  $ Xy,P «Pxy;p)  +  / 2 $aß  (Ho +  S) +  

d~ 2 /  «aß $PY (Ho d~ SpY) /  <*aß $ (Ho d~ S) -f- 

+  /(X0 £ß (i +  /ipnv ^  ^  +  / Î 9  ~  2 f  Ho %  *p +

+  /S a ß  (I — f i h x  ?  *  +  m  -  2 /  Sß)p .

where semicolons stand for co variant differentiations and parentheses con­
taining two indexes stand for symmetrization.

Since the tensor potential is not observable, any other function biuni- 
vocally related to can be chosen in order to describe the gravitational 
potential. Title expression

( IP )  $«ß =  M ß —  2 / ^ oy M  +  / M a ß  d - l / 4 / H « « 0  d” 1/ 2 /+ pv  ^  «aß ,

transforms eqs. (18) into the second order equations of the iterative procedure 
in the field theoretical approach [see eqs. (19) and (23) of Ref. [1 ]]. Thus 
one can say that the latter equations can be “ renormalized ” , to second order 
accuracy, to eqs. (1) by the metric

(SO ) ga& =  ^ ß  —  2 /^ a ß  d -  4 / 2 'Par M  ~  2 f  M a ß  —  k f  M « a ß  ~  ^  M  V  «aß •

That is, by using clocks and rods deformed by (20), the effect of the gravita­
tional potential ipaß is absorbed in the geometry of the space-time, and (to 
second order) general relativity is reobtained.

The motion of the m atter element is obtained, in both procedure, by 
taking the divergence of the energy-momentum tensor (the source of the field

6. — RENDICONTI 1978, voi. LXV, fase. 1-2.
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equations) and equating it to zero. In general relativity this gives rise to the 
equations of motion

r T\  *  c *  ;ß . *  o  .*y(21) Ho ^ aß ^a Syß Z

The m atter elements deviate from a geodesic owing to the stresses S*aß only. 
Even for such equations of motion (21), translating them by the use of eqs. 
(20), (10), (12), and (17) one obtains the second order equations of motion 
of the field theoretical approach.

As shown by Thirring [2] real rods and clocks (made out of atoms) are 
just the ones by which one has a metric given by ds2 =  dza dz^. There­
fore, by real rods and clocks deformed (in the unrenormalized picture) 
by aß one can, assuming them as uninfluenced by gravity (in the renor­
malized pictured, eliminate 4*aß and describe the motion of the m atter in a 
Riemannian space-time whose fundamental metric tensor is given by eq. (20). 
Only if one considers the real rods and clocks as deformed and, by calcula­
tions, he comes back to ideal instruments unaffected by gravity, he can 
judge the space-time as flat and gravity represented by a tensor potential.

4. Convergence to general relativity

The main aim of the two preceding sections was to show, through the 
comparison of the second order approximations of both the general relativity 
and of the field theoretical approach, how the “ renormalization ” works 
even in this case of the continuum.

Now the problem of the convergence of the m atter terms in the iterative 
field theoretical [1] approach can be tackled.

Let 1m be the m atter action integral of the n-th. step approximation. 
We can write it in one of the following ways

(22) j mM — Lm f X  = [i0 Lm' di- dV,- J L(TC) dt dVfl ,

where L(m =  [a0Lm' is the n -th order Lagrangean density, and

{23) L -  Lm yoat dt dt J ,

t being an auxiliary integration variable. The last expression of (22) with
(23) will be convenient in the following because in this form the dependence 
of ds on <2aß is transferred to l} n\

The m atter part (i.e. the right hand side) of the 5^-th order field equations 
obtained by varying ^aß in (22) is given by [1]

(24) — ji0 — Lg? D(B)aß .
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The second term of (24) is due to the ?z-th order continuity equation; it is 
therefore D(1)aß = / S aß because of eq. (14). The expression of for n 7^ 1
is not a priori known. The only thing we can notice is that the second term 
of (24) will contain, when made explicit, terms of order higher than the ^-th 
one (since the lowest order of the terms of D(n)aß is the first one). Such latter 
terms have to be cut when obtaining the ^-th order field equations.

The iterative procedure [1] rests on the fact that the same terms given in 
eq. (24) (i.e. the source of the ^-th order field equations) must be equal to the 
(n — i)-th order energy-momentum tensor multiplied b y / .  Such tensor can 
be got by the (n — i)-th order action integral, by varying in it the funda­
mental metric tensor, and its part relevant to matter is given by

(2s) T r 1)aß =  2 [Ao -  (saß+ [l() i a / )  n r ” •

Notice that Saß is present in eq. (25) because eq. (13) has been taken into 
account. Moreover eq. (13) holds to any order like the relationship

8a (ds) =  — \  z® S^aß ds .

Therefore the iterative procedure implies.

*TKn-i)
/o /O , .. n(w)aß t  (w) __  ^ x  0 I^M /  / c a ß i aP  J K  T («—!)(20;  H'ö ~ L) L M -  2 / (X0 — " C /o + /( X 0 Z Z ) L M

It has already been said that the tensor potential is not an observable 
and thus that the tensor potential can be transformed to another $aß by a 
widely arbitrary function if also the relationship between ^aß and the quantity 
ga§ of the “ renormalized space is correspondingly transformed. W hat we 
are searching for is a Lagrangean density LM to which the Lm are converging. 
Even the resulting theory will be renormalized into the observable curved 
space-time, and then each step of the iterative procedure will be seen as the 
n-th order approximate translation of the exact theory into the flat space- 
time. It is obvious that the exact Lm will be much more easily found if the 
translation rules are the same to any order. Therefore we choose to transform 
^aß to any order just into the $aß linked to gaß by the eqs. (9). In this way, eq. 
(14) holds to any order of approximation, the new D(n)ocß is equal to / S aß to 
any order and eqs. (26) can be written as

(n) 5>t (w-i)
(2?) -  * s “ß ^  —  4 ^  *  * )  VBT*.

where ha{i =  — 2 /^ 3  and where L(m are the L($  of eqs. (26) in which the 
potentials have been transformed.
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As said after eqs. (24), the terms of order higher than the n -th one have 
to be cut when obtaining the n-Xh order field equations. In passing from (26) 
to (27) a division by /  has been made. Hence in eqs. (27) the terms whose 
order is higher than the (n — i)-th order have to be cut. After this cutting 
the second term of the LHS of eqs. (27) reads Saß Lm“ ^ and is simpliefied by 
the same term in the RHS. Moreover it is convenient to pass from Lm to

— -L-m I
1/2

as in eq. (23). From here we omit the subscript M for simplicity. 
Equations (27) imply

SLW _  8L{n-1)
(28) W  “  ’

where Lw depends on aap and on ha3 but not on their derivatives. Obviously 
there are the additional conditions

(29) L(0) ( a * , KÙ  =  L<0) (a*) ,

(30) Lw («aß , o) =  L(0) (a*) .

As seen in a preceding paper [4], the conditions (28), (29), and (30) 
imply

T n I o \(i) Ä
(31) L(B) (a*  , h#) =  Ç ,  [ h ^  —  j  L<0) (a*) .

If the sequence {L(n)} uniformily converges in a domain 3) to a function 
L, it is

(32) L (öaß , >̂ aß) ~  (<#aß “f* ^aß) •

In our case of a neutral continuum it is

/ \ t (0) / \ __ ( dza d / \ 1/2(33) L (*«ß) -  ^ a ß  .

Hence eq. (31) gives

O «  t " = ( „  4 4  ( 7 )  ( * ,  4* .

The sequence {L(%)} uniformily converges if | i a $  | < 1 .  U nder this 
condition it is

L — dz® 
d t(35)
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If we make the hypothesis that the exact L is an analytic function of 
ha§ we can make an analytic continuation for ka$ za z^ >  — i. By the identity 
principle for the analytic function, L will have the same expression in all 
the domain z a z^ >  —■ i .

Now the theory is renormalized in the Riemannian space-time whose 
fundamental tensor is given by eqs. (9). Equation (35) put into eq. (22), 
taking into account eq. ( n ) ,  gives

(36) lu =  — j  N  d4 Q* .

The latter is just the second term of eq. (4) up to the coefficient 2/ 2. This 
coefficient too comes out when the pure field terms [3] are obtained (i.e. for 
them one obtains R /2 /2 in the integrand).

The condition kaß za >  — 1 corresponds to ds*2lds2 >  o, i.e. to having 
speeds lower than the light speed in the Riemannian space-time if the 
same happens in the pseudo-Euclidean space-time.

Thus general relativity is obtained to all orders.
As to the stress tensor, in the iterative procedure it has been considered 

as a given field; i.e. the problem of the link between stresses and strains has 
been postponed in order to treat it in the exact theory only. It has here been 
shown that the latter is the general theory of relativity and for such theory 
the overmentioned problem has already been solved by Cattaneo [7].
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