ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

N. PARHI, S.K. NAYAK

On non-oscillatory behaviour of solutions of
nonlinear differential equations

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche,
Matematiche e Naturali. Rendiconti, Serie 8, Vol. 65 (1978), n.1-2, p. 58-62.

Accademia Nazionale dei Lincei

<http://wuw.bdim.eu/item?id=RLINA_1978_8_65_1-2_58_0>

L’utilizzo e la stampa di questo documento digitale & consentito liberamente per motivi di
ricerca e studio. Non é consentito 1'utilizzo dello stesso per motivi commerciali. Tutte le
copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)
SIMAI & UMI
http://www.bdim.eu/


http://www.bdim.eu/item?id=RLINA_1978_8_65_1-2_58_0
http://www.bdim.eu/

58 Lincei — Rend. Sc. fis. mat. e nat. — Vol. LXV - Ferie 1978

Equazioni differenziali ordinarie. — On non-oscillatory behaviour
of solutions of monlinear differential equations . Nota ¢ di N. Paru1
e S. K. Navag, presentata dal Socio G. SANSONE.

R1ASSUNTO. — In questa Nota si danno condizioni sufficienti perché tutte le soluzioni
delle equazioni :

r@yY =@y = @) ed y'—gt,y) =50

siano non oscillatorie.

1. INTRODUCTION

In this paper, we are concerned with the nonoscillatory behaviour of
solutions of the following second order nonlinear differential equations;

(1.1) @) y)Y —p® Y =F@
(1.2) Y —g@, ) =f@,

where 7, p and f are real-valued continuous functions on [0, o0) such that
r&)>o0,p()>=o0,f{) =0 for te[o,c0) and g is a real valued continuous
function defined for #€ [0, 00), y€(— 00, o0) and v > 0 is the ratio of odd
integers. We restrict our consideration to those solutions of (1.1), (1.2) which
exist on the half-line [T, co), where T may depend on the particular solution,
and are non-trivial in any neighbourhood of infinity. In [2], we studied the
nonoscillatory behaviour of solutions of "' —p (f) ¥ = f(¢) and " — p (&)
¥ =f®.

We classify solutions of (1.1) or (1.2) as follows: a solution y (¢) is said
to be nonoscillatory if there exists a #, = T such that y(¥) %0 for >4 ; y(?)
is said to be oscillatory if for any # >T there exist #, and #; satisfying
4 < t, <ty such that y (%) >0 and v (#4)<<0; and it is said to be a Z-type
solution if it has arbitrarily large zeros but is ultimately non-negative or
non-positive.

2. In this section, we obtain sufficient conditions so that all solutions of
Egs. (1.1) or (1.2) are non-oscillatory.

THEOREM 2.1. Consider Eq. (1.1). Let rp and »f be once continuounsly

differentiable. Let (rp)’ () <o, @f) )=0 and rp and rf be not constants
over a common interval. Then all solutions of (1.1) are nonoscillatory.

(*) Supported by the U.G.C., India.
(**) Pervenuta all’Accademia il 4 agosto 1978.
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Proof. 1t follows from concavity considerations that no solution of (1.1)
is oscillatory or non-negative Z-type. Let y(¢) be a non-positive Z-type solution
of (1.1) with consecutive double zeros at ¢ and 4. Multiplying (1.1) through
by » (@) ¥' () we get

< [% COYOF =57y 02O IO OO (z)]

== ST COPO T O—COS Oy .
Integrating above equality from a to & we get

1

v -

0= —

[ @@y O dt——/ COSf@)y@®di>o0

1 Ry
a

a contradiction. Hence the theorem.

THEOREM 2.2. Consider Eg. (1.1). Let v, p and f be once continuously
differentiable such that ' #) < o,p' ({) <o and f'(t)=0. Let p(t) and f(¥)
be not constamts over a common interval. Then all solutions of (1.1) are
nonoscillatory. :

Proof. It is clear from concavity considerations that no solution of (1.1)
is oscillatory or non-negative Z-type. Let y(#) be a non-positive Z-type
solution of (1.1) with consecutive double zeros at @ and 4. Multiplying (1.1)
through by 3’ (#) we get

L@ ——— O PO —F Oy ®
dz v 41

I

e ACLARORVAOFIORS THOTCH O

Integrating the above equality from « to & we get

b
I

b
0=_V+I /Pl(f>yv+l(t>dl_./ f’(z‘)y(t)dt

a

b

—4 [ o eraso,

a
a contradiction. This completes the theorem.

Remark 2.3. Theorem 2.2 is true if 7' () =0, p'(®) =0 and f'(¥) <o.
In the following we prove a theorem for v > 1 in which we show that
all solutions of (1.1) are nonoscillatory with only a continuity condition on

7,2 and f.
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THEOREM 2.4. Consider Eg. (1.1) with v > 1. Al solutions of (1.1) are
nonscillatory if f (&) > o.

Proof. To complete the proof of the theorem it is enough to show that
no solution of (1.1) can be of non-positive Z-type because from concavity
considerations it follows that no solution of (1.1) is oscillatory or of non-nega-
tive Z-type. If possible let y(#) be a non-positive Z-type solution of (1.1)
with consecutive double zeros at @ and & (e < 4). So there exists a c€ (a, )
such that 3’ (#) <o for te(a,c]. Let £e>o0 be such that ¢ +e<<¢. For
tefa+e,c], Eq. (1.1) can be written as

(2.1) Oy O=pO+fOy®.

Integrating (2.1) from a+ ¢ to ¢ we get

4

Oy O Oty [ 57 Or 00 OF

ate

= f p(®dr+ ff(t)y‘”(t)df,

a+e ate
that is,
(2.2) —r(a+s)y’(a+s)y‘v(a+e)§jp(t)dt.
a+te
But
7@t Oy et pat9 @ttty

>0 ¥ (a+¢e) e—>0 vyl (a +€) ¥ (a + €)

[4
Hence taking the limit, as € — 0, in (2.2) we get [ 2 (%) d = oo, a contradiction.
This proves the theorem. p

Remark 2.5. A solution y () of Eq. (1.1), under the conditions of
Theorem 2.4, can have at most two zeros of the type y (2) =0 = y($),
¥y (a) <o,y (6)>o.

In the following, we prove a theorem which may be viewed as a com-
plement to Theorem 2.4.

THEOREM 2.6. Consider Eq. (1.1) with p({)>o. If f(&)=p @), then
all solutions of (1.1) are nonoscillatory.

Proof. We complete the proof of the theorem by showing that no solution
of (1.1) is of non-positive Z-type. If possible, let y (¢) be a non-positive Z-type
solution of (1.1) with consecutive double zeros at a and & (a < §). So there
exists a point ¢ € (@, ) such that y () > —1 for z€[¢,8]. Let z€[c, &)
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Integrating (1.1) from # to & we get
b
IR RS RUCETICPAOL
t
Integrating the above equality from # to 6 we get

b
y@=fﬂ)]v@+NWM@M

—/( ﬂ r(u))<f<~‘>+?(3)y ) ds.

Since y (#) <o, we have

8

fb(./ r(u))(f(’)+?(s)y(s))ds<o

So there exists a point # € (¢, 8) such that f(#)+ 9 (4) ¥’ (#) <o, that is,
f (&) < p(#), since ' (4)>—1. This contradiction proves the theorem.
Remark 2.7. A solution y (¢) of (1.1), under the conditions of Theorem
2.6, can have at most two zeros of the type y(a) =0=y (), ¥y (@) <o,
v (&) >o.
The following examples justify Theorems 2.2 and 2.6.

Example 2.8. Consider

(2.3) Y=y =1t —12)f, t>3.

From Theorem 2.2 ‘and Remark 2.3, it is clear that all solutions of (2.3) are
nonoscillatory. In particular, y(¥) = — 1/# is a nonoscillatory solution
of (2.3). It is easy to note that Theorem 2.6 cannot be applied to Eq. (2.3)
since 1> 1/t — 12/¢% for £ > 3.

Example 2.9. Consider
(2.4) g — B =, t>=>o0.

All solutions of (2.4) are nonoscillatory by Theorem 2.6. y(¥)=-—1 is a
particular nonoscillatory solution of (2.4). Theorem 2.2 cannot be applied
‘to (2.4) since p () =f() = 1.

Lastly, we prove a theorem similar to the above theorems for Eq. (1.2).

THEOREM 2.10. Consider Eq. (1.2). Let f be once continuously differen-
tiable suck that f' ({) =>o. Let yg(¢t,y)>0 if y7%o0. Further, assume that
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there exists a function k(¢,y),t>=0 and y€(— oo, co), such that %(t,0) =o,

by (¢, ) <o and hy(t,y) =g ,y). Then all solutions of (1.2) are nonoscil-
latory.

Proof. Clearly, yg (¢,%) >0, y 7 o implies that no solution of (1.2)
is oscillatory or non-negative Z-type. Let v (¥) be a non-positive Z-type solu-
tion of (1.2) with consecutive double zeros at 2 and 4(a < §). Multiplying (1.2)
through by 3’ () we get

LB @b,y —FO YO = — It &) —F ) D).

Integrating above equality from « to & we get

b

b
o= —[ha,yepdt— [ reyy@a>o,

Y%
a

a contradiction. Hence the theorem.

Remark 2.11. A solution y(f) of Eq. (i.2) under the hypothesis of Theorem
2.10 may have at most two zeros of the type y (@) =0 =y (8), v (&) <o,
¥ (@) >0,a<bé.
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