Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali Rendiconti

N. Parhi, S.K. Nayak
 On non-oscillatory behaviour of solutions of nonlinear differential equations

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 65 (1978), n.1-2, p. 58-62.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1978_8_65_1-2_58_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Equazioni differenziali ordinarie. - On non-oscillatory behaviour of solutions of nonlinear differential equations ${ }^{(*)}$. Nota (*) di N. Parhi e S. K. Nayak, presentata dal Socio G. Sansone.

Riassunto. - In questa Nota si danno condizioni sufficienti perchè tutte le soluzioni delle equazioni

$$
\left(r(t) y^{\prime}\right)^{\prime}-p(t) y^{v}=f(t) \quad \text { ed } \quad y^{\prime \prime}-g(t, y)=f(t)
$$

siano non oscillatorie.

I. INTRODUCTION

In this paper, we are concerned with the nonoscillatory behaviour of solutions of the following second order nonlinear differential equations;

$$
\begin{gather*}
\left(r(t) y^{\prime}\right)^{\prime}-p(t) y^{v}=f(t) \tag{I.I}\\
y^{\prime \prime}-g(t, y)=f(t)
\end{gather*}
$$

where r, p and f are real-valued continuous functions on $[0, \infty)$ such that $r(t)>0, p(t) \geq 0, f(t) \geq 0$ for $t \in[0, \infty)$ and g is a real valued continuous function defined for $t \in[0, \infty), y \in(-\infty, \infty)$ and $v>0$ is the ratio of odd integers. We restrict our consideration to those solutions of (I.I), (I.2) which exist on the half-line $[T, \infty)$, where T may depend on the particular solution, and are non-trivial in any neighbourhood of infinity. In [2], we studied the nonoscillatory behaviour of solutions of $y^{\prime \prime}-p(t) y=f(t)$ and $y^{\prime \prime}-p(t)$ $y^{\nu}=f(t)$.

We classify solutions of (I.I) or (1.2) as follows: a solution $y(t)$ is said to be nonoscillatory if there exists a $t_{1} \geq \mathrm{T}$ such that $y(t) \neq 0$ for $t \geq t_{1} ; y(t)$ is said to be oscillatory if for any $t_{1} \geq \mathrm{T}$ there exist t_{2} and t_{3} satisfying $t_{1}<t_{2}<t_{3}$ such that $y\left(t_{2}\right)>0$ and $y\left(t_{3}\right)<0$; and it is said to be a Z-type solution if it has arbitrarily large zeros but is ultimately non-negative or non-positive.
2. In this section, we obtain sufficient conditions so that all solutions of Eqs. (I.1) or (1.2) are non-oscillatory.

THEOREM 2.I. Consider Eq. (I.I). Let $r p$ and rf be once continuously differentiable. Let $(r p)^{\prime}(t) \leq 0,(r f)^{\prime}(t) \geq 0$ and $r p$ and $r f$ be not constants over a common interval. Then all solutions of (1.I) are nonoscillatory.
(*) Supported by the U.G.C., India.
${ }^{(* *)}$ Pervenuta all'Accademia il 4 agosto 1978 .

Proof. It follows from concavity considerations that no solution of (I.I) is oscillatory or non-negative Z-type. Let $\boldsymbol{y}(t)$ be a non-positive Z-type solution of (1.1) with consecutive double zeros at a and b. Multiplying (I.I) through by $r(t) y^{\prime}(t)$ we get

$$
\begin{array}{r}
\frac{\mathrm{d}}{\mathrm{~d} t}\left[\frac{1}{2}\left(r(t) y^{\prime}(t)\right)^{2}-\frac{\mathrm{I}}{\mathrm{v}+\mathrm{I}} r(t) p(t) y^{v+1}(t)-r(t) f(t) y(t)\right] \\
=-\frac{\mathrm{I}}{v+\mathrm{I}}(r(t) p(t))^{\prime} y^{v+1}(t)-(r(t) f(t))^{\prime} y(t) .
\end{array}
$$

Integrating above equality from a to b we get

$$
0=-\frac{1}{v+\mathrm{I}} \int_{a}^{b}(r(t) p(t))^{\prime} y^{v+1}(t) \mathrm{d} t-\int_{a}^{b}(r(t) f(t))^{\prime} y(t) \mathrm{d} t>0
$$

a contradiction. Hence the theorem.
Theorem 2.2. Consider Eq. (I.I). Let r, p and f be once continuously differentiable such that $r^{\prime}(t) \leq 0, p^{\prime}(t) \leq 0$ and $f^{\prime}(t) \geq 0$. Let $p(t)$ and $f(t)$ be not constants over a common interval. Then all solutions of (1.1) are nonoscillatory.

Proof. It is clear from concavity considerations that no solution of (I.I) is oscillatory or non-negative Z-type. Let $y(t)$ be a non-positive Z-type solution of (I.I) with consecutive double zeros at a and b. Multiplying (I.I) through by $y^{\prime}(t)$ we get

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left[\frac{1}{2} r(t)\left(y^{\prime}(t)\right)^{2}-\frac{\mathrm{I}}{v+\mathrm{I}} p(t) y^{v+1}(t)-f(t) y(t)\right] \\
& =-\frac{\mathrm{I}}{v+\mathrm{I}} p^{\prime}(t) y^{v+1}(t)-f^{\prime}(t) y(t)-\frac{1}{2} r^{\prime}(t)\left(y^{\prime}(t)\right)^{2}
\end{aligned}
$$

Integrating the above equality from a to b we get

$$
\begin{aligned}
0=-\frac{\mathrm{I}}{v+\mathrm{I}} \int_{a}^{b} p^{\prime}(t) y^{v+1}(t) \mathrm{d} t & -\int_{a}^{b} f^{\prime}(t) y(t) \mathrm{d} t \\
& -\frac{1}{2} \int_{a}^{b} r^{\prime}(t)\left(y^{\prime}(t)\right)^{2} \mathrm{~d} t>0
\end{aligned}
$$

a contradiction. This completes the theorem.
Remark 2.3. Theorem 2.2 is true if $r^{\prime}(t) \geq 0, p^{\prime}(t) \geq 0$ and $f^{\prime}(t) \leq 0$.
In the following we prove a theorem for $v \geq I$ in which we show that all solutions of (I.I) are nonoscillatory with only a continuity condition on r, p and f.

THEOREM 2.4. Consider Eq. (I.I) with $v \geq 1$. All solutions of (I.I) are nonscillatory if $f(t)>0$.

Proof. To complete the proof of the theorem it is enough to show that no solution of (I.I) can be of non-positive Z-type because from concavity considerations it follows that no solution of (I.I) is oscillatory or of non-negative Z-type. If possible let $y(t)$ be a non-positive Z-type solution of (I.I) with consecutive double zeros at a and $b(a<b)$. So there exists a $c \in(a, b)$ such that $y^{\prime}(t)<0$ for $t \in(a, c]$. Let $\varepsilon>0$ be such that $a+\varepsilon<c$. For $t \in[a+\varepsilon, c]$, Eq. (I.I) can be written as

$$
\begin{equation*}
\left(r(t) y^{\prime}(t)\right)^{\prime} y^{-v}(t)=p(t)+f(t) y^{-v}(t) \tag{2.1}
\end{equation*}
$$

Integrating (2.1) from $a+\varepsilon$ to c we get

$$
\begin{aligned}
{\left[r(t) y^{\prime}(t) y^{-\nu}(t)\right]_{a+\varepsilon}^{c} } & +\nu \int_{a+\varepsilon}^{c} y^{-v-1}(t) r(t)\left(y^{\prime}(t)\right)^{2} \mathrm{~d} t \\
& =\int_{a+\varepsilon}^{c} p(t) \mathrm{d} t+\int_{a+\varepsilon}^{c} f(t) y^{-\nu}(t) \mathrm{d} t
\end{aligned}
$$

that is,

$$
\begin{equation*}
-r(a+\varepsilon) y^{\prime}(a+\varepsilon) y^{-v}(a+\varepsilon) \leq \int_{a+\varepsilon}^{a} p(t) \mathrm{d} t \tag{2.2}
\end{equation*}
$$

But

$$
\lim _{\varepsilon \rightarrow 0} \frac{r(a+\varepsilon) y^{\prime}(a+\varepsilon)}{y^{\nu}(a+\varepsilon)}=\lim _{\varepsilon \rightarrow 0} \frac{p(a+\varepsilon) y^{\nu}(a+\varepsilon)+f(a+\varepsilon)}{v y^{v-1}(a+\varepsilon) y^{\prime}(a+\varepsilon)}=-\infty
$$

Hence taking the limit, as $\varepsilon \rightarrow 0$, in (2.2) we get $\int_{a}^{c} p(t) \mathrm{d} t \geq \infty$, a contradiction.
This proves the theorem.
Remark 2.5. A solution $y(t)$ of Eq. (I.I), under the conditions of Theorem 2.4, can have at most two zeros of the type $y(a)=0=y(b)$, $y^{\prime}(a)<0, y^{\prime}(b)>0$.

In the following, we prove a theorem which may be viewed as a complement to Theorem 2.4.

THEOREM 2.6. Consider Eq. (1.1) with $p(t)>0$. If $f(t) \geq p(t)$, then all solutions of (1.1) are nonoscillatory.

Proof. We complete the proof of the theorem by showing that no solution of (I.I) is of non-positive Z-type. If possible, let $y(t)$ be a non-positive Z-type solution of (I.I) with consecutive double zeros at a and $b(a<b)$. So there exists a point $c \in(a, b)$ such that $y(t)>-$ I for $t \in[c, b]$. Let $t \in[c, b]$.

Integrating (1.I) from t to b we get

$$
-r(t) y^{\prime}(t)=\int_{i}^{b}\left(f(s)+p(s) y^{\nu}(s)\right) \mathrm{d} s
$$

Integrating the above equality from t to b we get

$$
\begin{aligned}
y(t) & =\int_{i}^{b} \frac{\mathrm{~d} s}{r(s)} \int_{\delta}^{b}\left(f(u)+p(u) y^{v}(u)\right) \mathrm{d} u \\
& =\int_{i}^{b}\left(\int_{i}^{s} \frac{\mathrm{~d} u}{r(u)}\right)\left(f(s)+p(s) y^{v}(s)\right) \mathrm{d} s
\end{aligned}
$$

Since $y(t) \leq 0$, we have

$$
\int_{i}^{b}\left(\int_{i}^{s} \frac{\mathrm{~d} u}{r(u)}\right)\left(f(s)+p(s) y^{\nu}(s)\right) \mathrm{d} s \leq 0 .
$$

So there exists a point $t_{1} \in(t, b)$ such that $f\left(t_{1}\right)+p\left(t_{1}\right) y^{\nu}\left(t_{1}\right) \leq 0$, that is, $f\left(t_{1}\right)<p\left(t_{1}\right)$, since $y^{v}\left(t_{1}\right)>-\mathrm{I}$. This contradiction proves the theorem.

Remark 2.7. A solution $y(t)$ of (I.1), under the conditions of Theorem 2.6, can have at most two zeros of the type $y(a)=0=y(b), y^{\prime}(a)<0$, $y^{\prime}(b)>0$.

The following examples justify Theorems 2.2 and 2.6 .
Example 2.8. Consider

$$
\begin{equation*}
y^{\prime \prime}-y^{1 / 3}=\mathrm{I} / t-\mathrm{I} 2 / t^{5}, \quad t \geq 3 \tag{2.3}
\end{equation*}
$$

From Theorem 2.2 and Remark 2.3, it is clear that all solutions of (2.3) are nonoscillatory. In particular, $y(t)=-\mathrm{I} / t^{3}$ is a nonoscillatory solution of (2.3). It is easy to note that Theorem 2.6 cannot be applied to Eq. (2.3) since $\mathrm{I}^{>} \mathrm{I} / t-\mathrm{I} 2 / t^{5}$ for $t \geq 3$.

Example 2.9. Consider

$$
\begin{equation*}
y^{\prime \prime}-y^{1 / 3}=\mathrm{I}, \quad t \geq 0 . \tag{2.4}
\end{equation*}
$$

All solutions of (2.4) are nonoscillatory by Theorem 2.6. $y(t)=-\mathrm{I}$ is a particular nonoscillatory solution of (2.4). Theorem 2.2 cannot be applied to (2.4) since $p(t)=f(t)=\mathrm{I}$.

Lastly, we prove a theorem similar to the above theorems for Eq. (1.2).
Theorem 2.10. Consider Eq. (1.2). Let f be once continuously differentiable such that $f^{\prime}(t) \geq 0$. Let $y g(t, y)>0$ if $y \neq 0$. Further, assume that
there exists a function $h(t, y), t \geq 0$ and $y \in(-\infty, \infty)$, such that $h(t, 0)=0$, $h_{t}(t, y) \leq 0$ and $h_{y}(t, y)=g(t, y)$. Then all solutions of (I.2) are nonoscillatory.

Proof. Clearly, $y g(t, y)>0, y \neq 0$ implies that no solution of (1.2) is oscillatory or non-negative Z-type. Let $y(t)$ be a non-positive Z-type solution of (I.2) with consecutive double zeros at a and $b(a<b)$. Multiplying (I.2) through by $y^{\prime}(t)$ we get

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left[\frac{1}{2}\left(y^{\prime}(t)\right)^{2}-h(t, y(t))-f(t) y(t)\right]=-h_{t}(t, y(t))-f^{\prime}(t) y(t)
$$

Integrating above equality from a to b we get

$$
o=-\int_{a}^{b} h_{t}(t, y(t)) \mathrm{d} t-\int_{a}^{b} f^{\prime}(t) y(t) \mathrm{d} t>0,
$$

a contradiction. Hence the theorem.
Remark 2.II. A solution $y(t)$ of Eq. (I.2) under the hypothesis of Theorem 2.10 may have at most two zeros of the type $y(a)=0=y(b), y^{\prime}(a) \leq 0$, $y^{\prime}(b)>0, a<b$.

References

[I] E. Hille (1970) - Lectures on Ordinary Differential Equations, Addison-Wesley, London, 1970.
[2] N. Parhi and S. K. Nayak - On the Behaviour of Solutions of $y^{\prime \prime}-p(t) y^{v}=f(t)$, to apper in «Applicable Analysis».

