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Equazioni funzionali. — Asymptotic behaviour of perturbed
difference equations. Nota II di PaveL TALPALARU, presentata ® dal
Socio G. SANSONE.

RIASSUNTO. — L’Autore con I'impiego di una disuguaglianza (Lemma 3.1) di alcuni
risultati concernenti I’equivalenza asintotica di equazioni alle differenze.

1. INTRODUCTION

Difference equations occur in many branches of applied mathematics:
numerical analysis, physics, sampled-data systems, control theory and opti-
mization.

In order to discuss the asymptotic problems for difference equations,
generally speaking, the analogous methods to those for differential and func-
tional-differential equations are applicable and -the results obtained are also
analogous to those for differential and functional-differential equations.

The aim of the present paper is to extend part of the results of [3] concer-
ning the asymptotic equivalence of integro-differential systems to the case
of certain difference systems.

Fixed point technique and difference inequalities [1] have been used to
prove our main results.

2. NOTATIONS AND DEFINITIONS

Denote by N (#,) = {#,,7,+ 1,-+-}, where 7, is a natural number
{ . %
or zero; R* the k-dimensional real euclidean space with norm | x | = Z EZER
D
x = (%, %y, -+, 25) ; MF the space of all Ex% matrices A = (a;;)) with norm

%
|A| = max Y, |a;|. We denote by ® = @ (N, R¥) the space of all func-
b =1

tions from N (7,) into R¥, that is, for each # € N (n,) the value of x at # is

x (n) € RE. The topology of @ is the topology of uniform convergence on

every set Ny, (1) ={ng, g+ 1, -, g +m},m=0,1,---, that is, x; >

as 7 — oo in @ if and only if lim | x; () —x () | = o uniformly on every
=00

set N, (y) , 72 =o0,1,+-+. Note also that ® is locally convex space [5, pp.
24-26] with the topology defined by the following family of seminorms
121(%) !m=3up{lx(%) i;neN, (ny),m=0,1, -},

(*) Nella seduta del 13 maggio 1978,
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Let ®, = ®, (N, R¥) be the Banach space in @ of all bounded fun-
ction from N (72,) to RE. The noim in @, is defined by | x lo, = | % (%) lo, =
— sup {|x () | ; 2 € N ()}

The space ® and ®; was considered by D. Petrovanu [2] and C. P. Tsokos
and W. J. Padgett {4, Ch. V] in the study of functional equations.

We will consider two systems

(2.1) x(m+1)=A ) xx)

and

G2 e D=AW YW o)+ X ks, 56D,

where x,y are k-dimensional vectors, A : N (1) — MF is such that A (%) is
nonsingular for all # € N (n,), £: N (5,) XD — RF is, for any »n e N () con-
tinuous as a function of yeD (1 — a region in RF), 2: N (1) X N (z,) X
X D — REF is, for any (7, 5) €N (7,) X N (%) continuous with respect to y€D.
Note that if X (#) is the fundamental matrix of (2.1), then X(%) is a nonsingular
matrix and therefore X1 (%), exists for any =€ N (z,).

Observe that (2.2) is discrete analogous of a perturbed integro-differential
equation. In the following we will be concerned with the study of the asymp-
totic equivalence of the systems (2.1) and (2.2). The notion of asymptotic
equivalence which will be used is given by

DEFINITION 2.1. Let A (%) be kX k matrix, and « (%) a positive function;
we say that the systems (2.1) and (2.2) are asymptotically equivalent if, cor-
responding to each solution x = x (%) of system (2.1), there exists a solution
y =y (n) of (2.2) with the property that

(2.3) 1A@) [x () —y (W] =0(x(m) , n—>oo,

and conversely, to each solution y = v (%), of (2.2) there corresponds a
solution x# = x (#) of (2.1) such that (2.3) holds.

3. A PRELIMINARY RESULT

To establish the main results on asymptotic equivalence we need to give
the following lemma.

LemMA 3.1. ([1]). Let there exist functions u (n),v (%), % (n,s) and
w (7) such that:
a) w(n),v(n),h(n,s) are non-negative for n>s,n,seN (ng);
b) o () is positive, continuous and non-decreassing for r > 0;
¢) for any n €N (n,) we have the inequality

3=ny

(3.1) u(n) <c—+ 7‘2 ['v ) o (@ () + lgﬂk (s, 0@ (1))] ,
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where ¢ is a positive constant. Then for any n €N (n,) we have

(3.2) Q@) < Qe+ Z v (s) + Z /Z(S,I)]

8$=ng L
where
V4

Q@) = J Bd(%.
Proof. Define

é(no)zc.é(n)=c+820[v(s)co(u(s))+1§/L(:,I)m(u(l)):‘ n€N (ny+1).

From &), 4) and (3.1) it follows that & (%) > 0, % (n) < 6(z) and o (% () <
< o (b () for neN (r,). Then, since 6(1) <b(n) for 1 <n we have
o (2 (1)) < o (% () and therefore

b(n—l—I):v(n)m(u(n))—{—lgﬁ(n,l)m(u(l))—{—é(n)g

< v o (un) +°°(%(%))12_; h(n,1)+6(m),
from where
Aoy _ b6(n+1)—b(m)
o (6(%)) o (6 (%))
Ho()<z<b(s+1), then 0o () <w(d) <o ((+1)) and [0 ()]t <
[0 (& (s)]Y, and this implies

Bb(s+1) 4 ) b(s+1) .
4 . S 2
NAOIAON [ @

(3.3) <v() + 2 hn,1), neN (o).
I=ng

From here and (3.3) we get

b(s+1)
co(z) _v(s)+1§/«(s 1),seN (n),
b() 0
hence,
n—1 e th d o n-1
Z b[ 5o~ | s =slrorLren]
(8 3

The inequality (3.2) follows now using the definition of Q (2) and % (%) < & (%).

Remarks 3.1. When % (s, 1) = o, the inequality (3.2) reduces to a discre-
te-time version of a certain form of the Bellman-Gronwall inequality.
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3.2. If o (7) =, the inequality (3.2) becomes

M@gmxp{"i[v@H ﬁ:us,o]}.

$=mnyp 1=ny

3.3. Using 4) it follows that there exists 2z = Q~!(w) and (3.8) may be
written also as

(3.8%) w(n) < Q1 (Q () + nﬁ}l [v (s) + lgm/q (s, 1)]) )

§=ng

4. ASYMPTOTIC EQUIVALENCE OF (2.1) AND (2.2)

In this section we shall show that, under some conditions for a given
solution ¥ == ¥ (%) of (2.2), there exists a solution ¥ = x (%) of (2.1) such that
(2.3) holds and conversely. The technique used in the proofs is a combination
of the Schauder fixed point theorem and the theory of difference inequalities
(Lemma 3.1).

THEOREM 4.1. Swuppose that the following conditions are satisfied:
a) there exists a nonsingulay matrix A () such that

(4.1) [AR)X ()| <a@m),neN (ny),

where o (n) is a positive function for ne N (ny);

b) there exists a non-negative function a (n) such that

(4.2)5 (1 XA+ 1) f(n, | <a (n)u) (—]—(A?(%Ji) , for neN (),

byl <oo,
where o () is a function having the properties from Lemma 3.2 and, in addition,
(4-3) Q) > o0, for 22— o0;

C) there exists a non-negative function h (n , s) defined for n ,seN (ng),
s < n, such that

4t) ux—1<n+I>/e<n,s,y>\sun,s>w(‘—%<—@ﬂ),n,ser,

s<m;
d) the functions a (n) and % (n,s) satisfy

(4.5) i[a(s)+§s:k($,l)]<00,

8=ng 1=nq9
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Then, to each solution y =y (n) of (2.2) there exists a solution x = x (1) of
(2.1) such that

4.6) |AG) [x () —y )] | =0 (a (), oo,

Progf. To prove the existence of x () satisfying (4.6) is the same as to
prove the existence of a constant vector ¢ such that (4.6) holds with x (#) =
= X (n) c. Lety =y () be a solution of (2.2) satisfying y (#5) = ¥, . Then,

@) v =Xyt X ) 3 X5+ 1) [f 53 &)+

s=ngp

+1§k<s J1L,y (1))] , ne N (ng),

from which

INOYIO)N <|y0|+'§a<s>m(“3<f>y<~‘>')

« (7) o s=ng ()

+thx M(lm)ymi)_

1=ngo « (I)

Applying Lemma 3.1 one obtains

(IA(%)y(%)l)

) <Q(\yo\>+2[a<s)+zh<s 1)]

=Ny

and according to (4.3) and (4.5) we have MM)—‘- < M, for ne N (n,),

. » * ()
where M is a positive constant. From
\gjoxl(mtx)[f(s <s>>+1§k(s,[,y(1))”_<_
S e (LAOsO1) 3 AWy W]
S;ho[a(> ( 2 (%) )—I—Eh(s,l)co( a0 )]S
< o (M) _Zno[w>+§b<s r)] e N (1),

it follows that there exists

(4.8)  ¢=lm s;X s+ 1) [f(Jv y ) + Zs,é(s, 1 ,y(l))] + ¥ -
Using (4.8), we may write (4.7) as
Ay () =Am X () y, +

FAMX0 B X6 40|16,y OIS e
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—“A(%)X(%)gnx“l(s—l- DfG,y ) +1=Zhé(5, Ly@)| =

=An) X (#)c—

—A@)X@)éxﬁwwo IOYIORS TIRRTOL

_no

Thus, from (4.1) and (4.5) it follows

1A @) [y () —X () c] | Z°° Z" o as -0
« (#) = = [a © 1'2110/Z S I)] ° ’
i.e. the order relation (4.6).

Theorem 4.2 below, deals with a converse problem to that considered
in Theorem 4.1 above. We note that this converse theorem holds only with
an additional condition concerning the constant ¢ from x () = X (%) c.

THEOREM 4.2. Lez‘ the hypotheses of Theovem 4.1 be satisfied. T hen, grven
any solution x (n) = X (m) ¢ of (2.1) with |c| < M, where M = Z [a )+
+ Z h(s,1)|, there exists a solution y = y (n) of (2.2) such that (4.6) holds.

I=ny

Proof. Let ¢ satisfy |c] <M. We define n=(M —|¢})/2 and choose
n,€ N (n4) large enough so that

Sleo+ e | <aoan.

We shall establish the existence of a solution of the equation

(4.9) y(m)=Xmnec—
- X(n)gX"‘<s+ 1) [f(f,y(S)) +1§ E(s,1 :J’(I))], ne N (ny) .

Consider the set

A= {u;u(n) =A@y @n)«(n), where y (%) is defined on N () and
2] <M —n}, and define the operator

An)X (e __A(”)X(”) ix—l(s_i_ 1) -

(4.10) T (1) = o (70) o (7) i=n

. [f(s, A7 () o (8) % (s)) +1§0k G, 1, A (1) a(l)n (1))] , neN () .



PAVEL TALPALARU, Asymptotic behaviour of perturbed difference equations 49

From (4.1), (4.2) and (4.4) for = (v)e A, we have

fmomsm+w<M>§l[a@>+§%ﬁ<x,r>] <lcl+a=M—ny,

ne N (nl) ’
that is, 7 (A)c A. Next, it will shown that © is continuous.
Consider the sequence {w; (%)}, #;(n)e A, uniformly convergent on
N, (7)) to % (7)€ A. Let € > 0 and choose n,€ N (7,) so large that

(4.11) ;;, [a ) +1§05(A~, 1)] < elg o (M).

Then, using (4.10) we get

ng—1

o) — s ()| S 31X s+ ) 1765, A7 (9 0 (9w () —
-f<s,A—1@>ac01%<0>|+3§;1é<s,I,A—la>«<x>u<o>——
kG, 1, AT e (D () 1]+
+ 51

§=ng

X1 (s+1) [f (s, A () a () () +

+ lﬁl (s, 1, A7 (1) “(I)ui(l»] } +

=ng

+

X1 (s + 1) [f (5, A1 (s) o () 4 (5)) +

£ 3k, A Oammm)] |-

=ng

Using (4.2), {(4.4) and (4.11) it fcllows that the second term (the sum from
1, to 00) is dbminated by [ (M)e/2 @ (M)] = ¢/2. By the uniform conver-
gence of {u;(n)} on every N,, (), there exists 7, = n3 (¢, #,) such that for
i€ N (ng)
(s, AT @ a@u() —fl, A Dalu ()] <
<el4 K(1 -+ ny) (ng—my)
and

P, s , A (a(s)u(s) —~AG,s, A1) a()u ()| <

<e[4 K +np) (ny—my),
where
K=max{|X1(%)|; n€ Ny, (2,)} .

Hence, | v (n) — 1u; () | < e for ne N, (n;) and 7€ N (u,), i.e., the
sequence {#; (#)} is uniformly convergent to 7% (%) on every set N,, (#,) and

4. — RENDICONTI 1978, vol. LXV, fasc. 1-2.
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therefore 1 is a continuous operator. Since T(A)< A, then t(A) is uniformly
bounded. The equicontinuity of the family v (A) follows because the functions
in v (A) are defined for a discrete variable ». By the Schauder’s theorem,
there exists a solution of equation (4.9) which is a solution of equation (2.2)
and satisfies (4.6). The proof of the theorem is complete.

Remartk. Interesting particular cases may be obtained if we choose
A(n), a () and o () of particular forms [3].
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