ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti

Eugenio Sinestrari, Paola Vernole

A hysteretic semilinear parabolic equation

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **65** (1978), n.1-2, p. 11–14. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1978_8_65_1-2_11_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1978.

Analisi matematica. — A hysteretic semilinear parabolic equation. Nota ^(*) di Eugenio Sinestrari e Paola Vernole, presentata dal Socio G. Sansone.

RIASSUNTO. — Si studia il problema di Cauchy per una equazione parabolica semilineare con ritardo. Si dimostra l'esistenza e l'unicità della soluzione e la dipendenza continua da tutti i dati. Inoltre si studia la regolarità e l'esistenza in grande.

1. INTRODUCTION

In this paper we study the problem of finding a function u from $R_+ \times \overline{\Omega}$ into R, solution of the following problem:

(1)

$$\begin{aligned}
u_{t}(t, x) &= \Delta u(t, x) + \\
&+ \int_{-r}^{t} H(t, s, x, u(t, x), u(s, x), \nabla_{x} u(t, x), \nabla_{x} u(s, x)) \, ds \\
t &\ge 0, x \in \Omega; u(t, x) = 0, t \ge 0, x \in \partial\Omega; \\
u(t, x) &= h(t, x), -r \le t \le 0, x \in \Omega.
\end{aligned}$$

Here $\Omega \subseteq \mathbb{R}^n$ is a bounded open set with 'nice' boundary $\partial\Omega, r$ is a positive number and h is a given function from $[-r, 0] \times \overline{\Omega}$ to \mathbb{R} . We shall assume that $H(t, s, x, u_1, u_2, w_1, w_2)$ is a continuously differentiable function from $A = \{(t, s, x, u_1, u_2, w_1, w_2), -r \leq s \leq t < +\infty; u_1, u_2 \in \mathbb{R}; w_1, w_2 \in \mathbb{R}^n\}$ into \mathbb{R} .

We shall write the equation (I) as an abstract retarded functional differential equation in an interpolation space and we will use some abstract theorems to solve it they; extend the results of [4] to our problem.

2. EXISTENCE, UNIQUENESS AND APPROXIMATION OF THE SOLUTIONS

Let us choose θ and p such that

(2)
$$I/2 < \theta < I$$
 , $n/(2 \theta - I) .$

Let $E = L^{p}(\Omega)$. It is known that the operator Λ defined by: $D_{\Lambda} = W^{2,p}(\Omega) \cap W_{0}^{1,p}(\Omega)$ and $\Lambda u = \Delta u$ verifies:

 (L_1) Λ is the infinitesimal generator of a holomorphic semigroup $\{e^{\Lambda t}\}$ on E and $\|e^{\Lambda t}\|_{\mathscr{L}(E)} \leq M_1$, $t \geq 0$, $\|\Lambda e^{\Lambda t}\|_{\mathscr{L}(E)} \leq M_2/t$, t > 0.

(*) Pervenuta all'Accademia il 26 luglio 1978.

Let us denote by $D_{\Lambda}(\theta, p)$ the real interpolation space between D_{Λ} and E, with parameters $I - \theta$ and p (see [3]): we have $D_{\Lambda}(\theta, p) = W_{0}^{2,p}(\Omega)$. $\|\cdot\|$ denotes the norm in E and $\|\cdot\|_{\theta,p}$ the norm in $D_{\Lambda}(\theta, p)$. If a < b let us set $X_{a,b} = C^{0}([a, b], E)$ and $\tilde{X}_{a,b} = C^{0}([a, b], D_{\Lambda}(\theta, p))$. Let $u(t) = u(t, \cdot), h(t) = h(t, \cdot)$ and

(3)
$$\mathscr{F}(t, u(s), -r \le s \le t)(x) =$$

= $\int_{-1}^{t} H(t, s, x, u(t, x), u(s, x), \nabla_{x} u(t, x), \nabla_{x} u(s, x)) ds$.

Then problem (1) can be written as:

(4)
$$\begin{cases} u'(t) = \Lambda u(t) + \mathscr{F}(t, u(s), -r \le s \le t) & t \ge 0 \\ u(t) = h(t) & -r \le t \le 0 \end{cases}$$

Here $u \in \tilde{\mathbf{X}}_{-r,\mathbf{T}}$, $h \in \tilde{\mathbf{X}}_{-r,\mathbf{0}}$ and $\mathscr{F}(t, u(s), -r \leq s \leq t)$ is a Volterra functional determined by t > 0 and the values of u(s) for $-r \leq s \leq t$: following Driver [2] we call (4) a hysteretic parabolic equation and denote $\mathscr{F}(t, u(s), -r \leq s \leq t)$ by $\mathscr{F}(t, u(\cdot))$ for t > 0. We call a mild solution of the problem (1) or (4) in [-r, T] a function $u \in \tilde{\mathbf{X}}_{-r,T}$ satisfying:

(P)
$$\begin{pmatrix} u(t) = e^{\Lambda t} h(0) + \int_{0}^{t} e^{\Lambda(t-s)} \mathscr{F}(s, u(\cdot)) ds & t \in [0, T], \\ u(t) = h(t) & t \in [-r, 0]. \end{cases}$$

It is easy to check (owing to (2) and to the continuous differentiability of H) that the following properties of \mathscr{F} hold:

- $\begin{array}{ll} F_1) & \text{Given } T > 0 \ \text{ and } \ u \in \tilde{X}_{-r,T} \text{ , } t \rightarrow \mathscr{F}(t \text{ , } u(\cdot)) \text{ is continuous from } [0 \text{ , } T] \\ & \text{ to } E. \end{array}$
- F₂) Given T > 0 and $u_0 \in \tilde{X}_{-r,T}$ there exist positive numbers r_0 and k_0 such that $\sup \{ \| \mathscr{F}(t, u_1(\cdot)) \mathscr{F}(t, u_2(\cdot)) \| , 0 \le t \le T \} \le \le k_0 \| u_1 u_2 \|_{\tilde{X}_{-r,T}}$ for each $u_1, u_2 \in \tilde{X}_{-r,T}$ such that $\| u_i(t) u_0(t) \|_{\theta,p} \le r_0, i = I, 2, t \in [-r, T].$

THEOREM 1. For each $h \in \tilde{X}_{-r,0}$, there is a positive number T_0 such that there exists a unique mild solution of (1) in $[-r, T_0]$. Moreover there exist $\delta_0 > 0$ such that if $h_1 \in \tilde{X}_{-r,0}$ and $||h_1 - h||_{\tilde{X}_{-r,0}} \leq \delta_0$ the mild solution u_1 corresponding to the initial value h_1 is still defined in $[-r, T_0]$ and we have $||u_1 - u||_{\tilde{X}_0, T_0} \leq c_0 ||h - h_1||_{\tilde{X}_{-r,0}}$.

The proof is based on a suitable use of the contraction mapping principle in order to obtain the above mentioned dependence of T_0 on the initial function h and can be carried out on the same lines of the proof of Theorem 2.1 of [4]. It follows from theorem I the uniqueness in the large of the solution of (P).

For every $n \in \mathbb{N}$ let $\Lambda_n : \mathbb{D} \subseteq E \to E$ be a linear operator verifying the condition (L_1) with the same constants M_1 and M_2 . Let the following condition hold:

(A) $\lim_{n \to \infty} ||e^{\Lambda_n t} x - e^{\Lambda t} x||_{\theta,p} = 0$ uniformly in $t \in I$ (compact interval of \mathbb{R}_+) and $x \in \mathbb{K}$ (compact set of \mathbb{E}).

For every $n \in \mathbb{N}$ let \mathscr{F}_n be a functional verifying F_1 and F_2 with the same constants r_0 and k_0 . Let the following condition hold:

(B) Given T > 0 and $u \in \tilde{\mathbf{X}}_{-r, \mathrm{T}}$ then $\lim_{n \to \infty} \sup \{ \| \mathscr{F}_n(t, v)(\cdot) \| - \mathscr{F}(t, v(\cdot)) \|, t \in [0, \mathrm{T}] \} = 0.$

The following theorem describes the dependence of the solution on all the data Λ , \mathscr{F} and h: the proof is similar to that of Theorem 3.1 of [4].

THEOREM 2. Given $h \in \mathbf{X}_{-r,0}$ let δ_0 and \mathbf{T}_0 be the positive constants given by Theorem I and let (A) and (B) hold. If we choose $h_n \in \mathbf{\tilde{X}}_{-r,0}$, $||h_n - h||_{\mathbf{\tilde{X}}_{-r,0}} \leq \delta_0$ $(n \in \mathbf{N})$ and $\mathbf{T}_0^* \in \mathbf{]}_0$, \mathbf{T}_0 [, then for each $n \geq n_0$ (depending on h and \mathbf{T}_0^*) there exists a unique solution u_n to the following problem:

$$(\mathbf{P}_{n}) \quad \left\{ \begin{array}{l} u_{n}\left(t\right) = e^{\Lambda_{n}t} h_{n}\left(0\right) + \int_{0}^{t} e^{\Lambda_{n}\left(t-s\right)} \mathscr{F}_{n}\left(s, u_{n}\left(\cdot\right)\right) \, \mathrm{d}s \, , \, t \in \left[0, \, \mathbf{T}_{0}^{*}\right] \, , \\ u_{n}\left(t\right) = h_{n}\left(t\right) \, , \, t \in \left[-r \, , \, 0\right] \, . \end{array} \right.$$

If in addition u is the solution to (P) and $\lim_{n\to\infty} h_n = h$ in $\tilde{\mathbf{X}}_{-r,0}$ then we have $\lim_{n\to\infty} u_n = u$ in $\tilde{\mathbf{X}}_{-r,T_0^*}$.

From this theorem and by means of a compactness argument we can derive a result which shows that a solution of (P) can be uniformly approximated by solutions of (P_n) in every compact interval of R_+ .

THEOREM 3. Let Λ_n , \mathcal{F}_n and h_n verify the assumptions of Theorem 2. Let $u: [-r, T] \to D_{\Lambda}(\theta, p)$ be a solution to (P). For sufficiently large n there exists $u_n: [-r, T] \to D_{\Lambda}(\theta, p)$ a solution of (P_n) and we have $\lim_{n \to \infty} u_n = u$ in $\tilde{X}_{-r,T}$.

3. REGULARITY AND EXISTENCE IN THE LARGE OF THE SOLUTION

The regularity of the mild solution can be studied by using the theory of Da Prato-Grisvard [1]; the following theorem can be proved with the aid of Theorem 4.7 of [1].

THEOREM 4. Let F verify the condition:

(C) there exist $p' \in [I, +\infty]$ and $\theta' \in]0, I[$ such that for every T > 0 and $u \in \tilde{X}_{-r,T}, t \to \mathcal{F}(t, v(\cdot))$ is continuous from [0, T] to $D_{\Lambda}(\theta', p')$.

Then every mild solution is classical i.e. for each t > 0, $u(t) \in D_{\Lambda}$, u is continuously differentiable from]0, T] to E and $u'(t) = \Lambda u(t) + \mathcal{F}(t, u(\cdot))$ holds.

The asymptotic behaviour of the maximal mild solution can be described by the following theorem, which is not difficult to prove:

THEOREM 5. If $u^* : [-r, T^*[\to D_{\Lambda}(\theta, p) \text{ is the maximal solution of} (P) and <math>T^* < +\infty$, we have $\sup \{ \| u^*(t) \|_{\theta,p}, t \in [-r, T^*[\} = +\infty.$

We give now some results concerning the existence in the large of the solution.

We need the following Lemma, whose proof is similar to that of Theorem 4.1. of [4]. If $x, y \in E$, let $D_+ ||x|| y$ denote the right derivative of the function $t \to ||x + ty||$ at zero.

LEMMA. Let F verify the condition:

(F₃) For every T > 0 and $u \in \tilde{X}_{-r,T}$, $D_+ || u(t) || \mathcal{F}(t, u(\cdot)) \le 0$, $t \in [0, T]$. Then for each solution of (P) in [-r, T] we have $|| u(t) || \le || u(0) ||$ for every $t \in [0, T]$.

Remark. A simple case in which (F₃) is satisfied is when we have $u_1 \cdot H(t, s, x, u_1, u_2, w_1, w_2) \leq 0$ in A (for example $H = -u_1 |w_2|$).

Now we give a last theorem about the global existence of the solution.

THEOREM 6. Suppose (F₃) hold and let there exist a, $a_{i,j}$ (i, j = 1, 2), continuous functions from $\{(t, s, x), -r = s \leq t < +\infty, x \in \overline{\Omega}\}$ into \mathbb{R}_+ such that

(F₄) | H (t, s, x, u₁, u₂, w₁, w₂) | ≤ a (t, s, x) | u₁ · u₂ | +
$$\sum_{i,j}^{1,2} a_{i,j}(t, s, x) | u_i | \cdot | w_j |$$

in A. Then for any $h \in \tilde{X}_{-r,0}$ there exists a unique solution to the problem (P) in $[-r, +\infty]$.

In fact we can deduce from the lemma and from (\mathbf{F}_4) that $\sup \{ \| u(t) \|_{\theta,p}, t \in [-r, \mathbf{T}] \} < +\infty$. The conclusion follows from Theorem 5.

References

- [I] G. DA PRATO and P. GRISVARD (1975) Sommes d'opérateurs linéaires et équations différentielles operationnelles, « Jour. Math. Pures Appl. », 54, 305-387.
- [2] R. D. DRIVER (1962) Existence and stability of solutions of a delay-differential system, «Arch. Rat. Mech. Anal.», 10, 401-426.
- [3] J. L. LIONS and J. PEETRE (1964) Sur une classe d'espaces d'interpolation, «Publ. Math. I.S.H.E. », 19, 5-68.
- [4] E. SINESTRARI and P. VERNOLE (1977) Semi-linear evolution equations in interpolation spaces, «Non Linear Anal, Theory, Methods and Appl.», 1, 249-261.

14