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Calcolo delle probabilith. — Contributions to stochastic compart-
mental analysis ™. Nota di Vincenzo Carasso e STEFANO L. Paveri-
FonTana, presentata ¢ dal Corrisp. G. SESTINI.

RIASSUNTO. — Viene affrontato lo studio della formalizzazione stocastica dei modelli
compartimentali proposta da Matis e Hartley [5].

La risoluzione in forma chiusa per la funzione generatrice di probabilitd (p.g.f.) mette
in evidenza il ruolo dominante della matrice compartimentale nella evoluzione del sistema,
il che consente di sfruttare sistematicamente risultati originati- dalla corrispondente teoria
deterministica.

Si ottiene una serie di implicazioni sul tipo di distribuzione probabilistica delle particelle
nel sistema.

The equation
(12) %x(z‘):Lx(t)—{-s(z‘), t>0
(15) x(0) = xecR"

is the representation of a linear smwvariant compartmental model [4], [7], [8]
for the evolution of a given substance among N compartments within a
biological system, iff:

) L=(LpeR"N is a compartmental matrix, namely

def

N
Lyp>0 for j££4, and ze——; Ly —L;; >0 for je{l,---,N}.
| =1

k4§
5 x>0

¢) s@eRY, and s@® >0 for 2=>0.

Here RY denotes the set of N-dimensional real column vectors. In addition,
for veR", v >0 stands for v;>0,7¢{l,--+,N}; v =0 stands for v, =0,
ie{l,..-,N}; v=>0 stands for v =0, and v£0; a similar notation holds
for matrices.

“Moreover, 1 =(1,1,.--,)TeR"; e =(1,0,...,00 R, & =
=(0,1,0,---,00"eR", etc. Finally, if v eR", diag (v) = (3; v) e RN
where 8, =0 for /£ %2,8;, =1 for i =£.

(*) Work performed under the auspices of the GNFM-CNR, in the context of the
« Progetto Finalizzato di Medicina Preventiva ».
(**) Nella seduta del 15 giugno 1978.
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In Eqs. (1), x; (¢) is the expected value of the number of molecules of
the substance in compartment £ at time #; s;(¢) is the injection rate of the
substance into compartment £ at time #;/ x;(¢) is the leaking rate from
compartment £ to the external world at time #; L is closed (or leakless)
iff 4 =o0 for ke{l,---, N}

The solution of Cauchy problem (1) is
t
(2) x(z‘,x",s(-))=euxo-}—f(expL(z‘——T))s('c)d'r.
0

In the literature (see for example [3]) one may find the following results.
They concern the transition matrix exp (L#), and, for all of them, physical
interpretations in terms of leakages, flows, etc. can be given.

PROPOSITION 1. Let L eRY*N be compartmental. Then
a) exp (L) >0
and
Og[eXpCLt)]lkél fO?’ i!ée{l)"')N}’ Zgo)
&) if L is irviducible, then exp (Lt) >0 for t>0;
¢) if L is closed, then L is singular
and
exp(L™H1 =1 for t=0;
d) if L is irreducible. then it is closed iff it is singular;
e) if L is irveducidle and closed then a (Perron) vector p >0 with 1Tp =1

exists suck that exp (L&) — p1* for t — + oo.

In the literature (see, e.g., [2], [5], [6]) the problem

2

v =

~

(3a) %P(n;r)= La((ng+D)P(n+ ef—é ;) —n, P (n; ) +

-
I
-

Ry

-

=
N

+ 2kt DP @t —mP@;0)+
N

+;1Sk(t><P(n—ek;t)—P(n;¢)), ;0.

subject to the initial conditions

(3b) P(n;0)=P(n), =neN",
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and to the further requirements

(30) 0<P@;H=<1, neN', 120,
(3d)  Pm;y=1, +=0,
neNN

has been proposed as the stochastic counterpart of problem (1).

Here, P (n;8) = Prob(@ @) =n),a () = (5. (2) ,- - -, in ()" € NV, (with
N={0,1,2,---}); finally for any £e€{l,.---, N}, 7 (¥ is the random
variable which indicates the number of molecules of the substance which
are present in compartment £ at time %

It can be shown [1] that if the initial distribution, {P°(n),neN"}, is
such that the expécted values

7 (0) = E [%, (0)] = ”;;N ny PO (n)

exist and are finite, then a unique solution, {P (n;#),ne N"}, of problem
(3) exists at any time #=0.

The probability generating function (p.g.f.) of the random vector #i(2) is
. N
@ G&t= 2 Tl &P(n;2)
. neN" =1

(with §eC" such that |£;| <1 for 7e{l,---, N}).
We find that it obeys the evolution problem

(0 SGEH=GV (LT +s0)a@En; >0,

(sb) G(5;0) =G (®.

whose solution is

© G (§;4) = exp ((’s'—— 1" f (exp (L)) s (¢ — ) d«-) X
X GO ((exp @' ) (E—1H+1).

If L is closed (see part ¢ of Prop. 1) then result (6) reduces to

7 GEn=ex (E—1" [ e @sw—de) GRS,
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A direct consequence of Eq. (7) is the following: if

0 — 7 — 0 — 4 0
(8) «* = E [ (0)] = ”§N nPO (n) = (EG (g))gzl ,
then
©) xO)=E[A@O] ==, s().

Hence, the comparison of Eqgs. (9) and (2) shows that the evolution of
the expected values according to the stochastic model (3) is in agreement
with the corresponding evolution according to the deterministic model (1).

Results which are strictly related to Eq. (6) have already appeared in
the literature (see, e.g. [2], [5], [6] and other papers by the same Authors).
Eq. (6) summarizes them and casts them in a more compact form.

Indeed by inspection of (6) one can recognize that the evolution matrix,
exp (L#), plays for the stochastic process a role which is as important as the
one which it plays for the deterministic process (Eq. 2). Hence form (6) per-
mits to transfer to the stochastic problem a large part of the information which
has been established, concerning exp (L#), in the deterministic compart-
mental literature.

As a consequence of Eq. (6) we are now in a position to draw several
implications, a part of which have appeared in the literature for specific
cases.

REMARK 1. Let 7, (#) denote the random vector which describes the
number of particles which were present in the compartments at time o and
are still present at time z. Let #; () denote the random vector which describes
the number of particles which arrived from the sources into the compartments
in 0, #] and are still present at time £ Due to be basic hypothesis of the
stochastic progess, according to which particles in the system act independently
of each other, 7, (#) and 7, (¢) are independent random vectors, at any time
t>0.

The p.g.f. of #,(¢) is given by
Go(§;8) =GO [(exp ") §—1) +1],
while the p.g.f. of #, (¢) is given by
G,(§;0) =exp [E— D" x(,0;5(-)].
Then as a consequence of Eq. (6) the p.g.f. of
7i () = #ig (2) + 7, (9)
is given by
G(8§;0=Go(§;0G;(§;0.
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REMARK 2. If 7(0) is a multivariate Poisson random vector with inde-
pendent components; i.e: if

G®(§) = exp [(§— 1" #],
then
Gt =exp[(§—V x(r,2,s(:)], =0,

which in turn is the p.g.f. of a multivariate Poisson random vector with
independent components.

REMARK 3. If the system has sources and at time zero is completely
empty, i.e. if the initial p.g.f. is

G =1,
then
G =exp[(§—1)"x(¢,0,s(-)], #=0.

Hence # (¢) is at any time # = 0 a multivariate Poisson random vector
with independent components.

REMARK 4.  If initially (with certainty) # (0) = mef (for some
£e{l,2,.--,N}), and if there are no sources, i.e. if the initial p.g.f. is given

by G(&) = &%, then
. } y
G(g;f)z[j;ﬁkj(t)ﬁj—i‘ﬁko(l‘)] ’ t=0,
where
Pii (&) = (exp (L' )y, jef{l, -+ N},

and

N
Pro (@ =1 *—j; P @) -

Hence # () has a multinomial distribution with parameters #¢ , pz; and pzo-
If the system is closed, since (exp (L'#£))1 =1 we have

N
-E, (', =1 and  pz () =0
7=

at any time #=0.

REMARK 5. If initially we have (with certainty) for any £e{l,-., N},
n(,i particles in the A-th compartment and there are no sources, i.e. if the
initial p.g.f. is given by

@®=g%,
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then

N N ng
G(§;H)= 7::[-‘[ [; 2 (D) &5+ Pro (’)] .

=1

Due. to the fact that the particles in the system act independently of each
other, we can state that in this case # (#) is the sum of N independent
random vectors:

) = Ig AP @),

where any A% (#) is a multinomial random vector with parameters 7 , py, ()
and pg, (®) (see Remark 4).

REMARK 6. If the system is closed and irriducible, without sources, and
if it initially contains (with certainty) M particles (globally), then

lim G(§;9) =" &",

t—> 400

where p is the Perron vector.
Hence for long times G approaches the p.g.f. of a multinomial random

vector with parameters M and p,,---, pn (the components of the Perron
vector p).
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