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Equazioni funziomali. — Asymptotic behaviour of perturbed
difference equations. Nota 1 di PaveL TALPALARU, presentata ©
dal Socio G. SANSONE.

RIASSUNTO. — Questa Nota riguarda alcuni problemi qualitativi sulle equazioni alle
differenze e in particolare questioni concernenti 'equivalenza asintotica di queste equazioni.

I. INTRODUCTION

The theory of difference equations is in a process of continuous develop-
ment and it is signifiant for its various applications in numerical analysis,
physics, control theory and optimization. In recent years, considerable atten-
tion has been paid to the development of the qualitative theory for difference
equations.

In this paper, we shall give some general results on the asymptotic rela-
tionship between the solutions of a linear difference equation and its perturbed
nonlinear equation.

The relationship between the asymptotic behaviour of a homogenecus
differential equation and a nonhomogeneous perturbation of that differential
equation has been widely investigated. The purpose of this paper is to develop
a part of those problems for some classes of difference equations. The problems
considered in this article are in the general spirit of the investigations of
the Author [5], M. Basti and B.S. Lalli [1] and T.G. Hallam [2], [3].

2. NOTATIONS AND DEFINITIONS

Denote by N (24) = {#n,, 7o + 1,-- -}, where #, is a natural number or
k

zero; R* the A-dimensional real euclidean space with norm |z | = 2 EZAR
s |
x = (%, %, +, x) ; M¥ the space of all £X 4 matrices A = (g;;) with norm
k
| A| =max D |a;|. The identity matrix is denoted by E. We denote
ii=1

by ® = ® (N, R¥) the space of all functions from N (#,) into R¥, that is,
for each e N (#,) the value of x at # is x ()€ R% The topology of ® is the
topology of uniform convergence on every set N,, (ng) = {ng,#q 1, -
<eey g+ m},m=0,1,--- that is, x; >x as i —co in ® if and only if

lim | x; (#) — x (#) | = o uniformly on every set N, (#,) ,s2=0,1,--- Note
t—>00

also that @ is a locally convex space [8, pp. 24-26] with the topology defined by

(*) Nella seduta del 13 maggio 1978.
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the following family of seminorms |x ()|, =sup{|x () |;ne N, (z,),
m=o0,1,-} Welet ® = @, (N, R* be the Banach space in @ of all
bounded functions from N (7,) to R¥. The norm in @, is defined by | x o, =
= |x (n) lo, =sup {| x () | ; e N (ny)}.

The spaces ® and @, were considered by D. Petrovanu [4] in the study of
discrete Hammerstein equations and by C. P. Tsokos and W. J. Padgett [7,
Ch. V] in the study of random discrete Fredholm and Volterra equa-
tions.

We will be interested in establishing asymptotic relationship, between
the solutions of unperturbed equation

(2.1) x(n+1)=A ) x(n)
and its perturbed nonlinear equation
22) yOt+D=A@y@ + 0, y0) +g0,ym), Ty @)

where x , ¥ are 4-dimensional vectors, A : N (7)) —MF is such that A () is
nonsingular for all ze N (%) ,f: N (55) XD — R* is, for any ne N (»,) con-
tinuous as a function of y€ D (D — a region in R¥), ¢: N (,) XD XD — R¥ is,
for any #€ N (7,), continuous in the last two arguments, and T is a continuous
operator from ® (N, D) into ® (N, D).

Note that if X (%) is the fundamental matrix of (2.1), then it is the unique
solution of the following matrix difference equation

Xn+1)=AmXMw, with X () = E,

and also that X () = A (n-—1)A (n—2) -+ A (1) E, from which, since
A (n) is nonsingular, follows that X! () exists for any #e N (%,). With
respect to the operator T we can impose on it various meanings.

In the following we will be concerned with the study of the asymptotic
equivalence of the equations (2.1) and (2.2). In this paper we consider the
notion of asymptotic equivalence given by

DEFINITION 2.1. Let B (%) and C (%) be 2X £ matrices and « () a posi-
tive function. We say that the equations (2.1) and (2.2) are asymptotically
equivalent if, corresponding to each solution x = x (%) of (2.1), there exists
a solution y = ¥ (%) of (2.2) with the property

(2:3) IB)y(m —C@xm|=o0(x(®), as n—co,

and conversely.

Since our results are formulated in terms of arbitrary matrices B (%),
C (#) and an arbitrary function « (%), they offer a greater versatility in
obtaining various asymptotic properties for specific classes of discrete equa-
tions.
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3. A PRELIMINARY RESULT

To establish our main result on asymptotic equivalence, we need to give
a lemma which will be used in the following section. In Lemma 3.1 X (%),
B (%), C () are nonsingular £X £ matrices for ze€ N (n,); P a projection and ¢
satisfies the inequality 1 <g < co.

LEMMA 3.1. Let there exist a constant K > o such that

n

(3.1) 2IBMX@PRA(HC ()R <K?, neN(n);

$=ng

and suppose that

(o]

(3-2) ; | C-1(5) B (s) |"0 = oo
Then,
(3-3) lim | B (%) X () P | = o

Proof. For any ne N (n;) we have |C1 (%) X (%) P| > o and therefore
n

we may define % (1) = | C~'(#) X (#) P|~¢ and g (n) = , % (s). Then, from
the identity F=mo

C* ) X () P () = 33 C1 () B () B ()
- X (1) PX~1(5) C (s) C-1 (5) X () P4 (5) ,
it follows, by using Holder’s inequality that
CHHX )Pl = 1CH X (IPI T A0 =

n /g
= |C (n) B () | [E | B () X () PX (5)C (5) l"] :

n e 1/p
S oxormer|,
where p~1 + ¢ 1= 1. Since
[ICLOXOPEE | <|ICLEOXEGP|2E)=|CrX ()P
we have

|C () X PA ) P < |CH () X (5) P o2 = [CH () X () P [0 = A(s).

From here and (3.1) it follows

7 /g
(34 1C*mX @ P [EHS)] =K|Cl'@B ()|, neN(ny).

S=MNg
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From the identity
B () X () Pg (r) = 2 B (n) X () PX71(s)C (s) C* () X () P& (s),

§=ng

in an analogous manner, one can show that
n —1/q

(3.5) IBoX )Pl <K [z}/z@] , pe N (ng).
s=1ng

The conclusion of the Lemma will follow provided it is established that
3% (s) = oo. To prove this, we observe that from (3.4) we have
s=ng
|C1(m) X () P | [g )]" <K |C* (%) B () |
and therefore % (z) [g (#)]* = K2 |C1 (%) B (n) | . Since 2 (n) =g (n) —

—g (n— 1) it follows that g (%) —g (n — 1) = K| C-1(n) B! (%) |2 g (n),
from where,

(36 g —KICT@)BH) [ =g(r—1), neNm—1).

If we use the well-known inequality 1 — 2 < exp (— #), from (3.6) one
obtains '

& (o) <g (o + 1)exp [~KH[CH (o + 1) B (o + 1) [ 1],
& o+ 1) <g (o + 2) exp [~ K| C (3 + 2) B (o + 2) | 1],

...........................................................

gn—1) <g@mexp [—K2[C(m) B~ (m) 7],

from where, g () =g (n,) exp [K“’s i [C1(s) B~ (s) i’q] .

=ng+1

This inequality implies that lim g (%) = Z % (s) = oo which yields the

n—> oo §=Ng
desired conclusion.

Remark. When B =C = E the condition (3.1) becomes

(3.1 D1 X (s) PX-1(s) |2 < Ko,
8=Ngy
(3.2) is satisfied and (3.3) becomes
(3.3") im | X #)Pl=o0 (Lemma, [6]).

4. ASYMPTOTIC EQUIVALENCE OF (2.1) AND (2.2)

In this section we shall show that, under some conditions for a given
solution x = x (%) of (2.1) there exists at least a solution y = y (%) of (2.2)
such that (2.4) holds with « (#) =1 and conversely.
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THEOREM 4.1. Swuppose that the following conditions are satisfied:

a) there exist two nonsingular kXEkE matrices B (n) and C (n) defined
Sfor ne N (ny) such that

IB() | <M,|B1(%)| <M,neN (g, B —Cu|—>o

00
as n— 00, Cr()|[t=o00,g >1 (M s a positive constant);
q
s=ng

b) there exist two supplementary projections Py and Py and a positive constant
K such that if X (n) is a fundamental matrix of the equation (2.1) then

n—1

3B )X () Py XA (s - 0)C (s + 1) 2+

—[—i|B(n)X(n)P2X'1(s+ NC+1)r <Kq, ne N (ng);

C) there exists a non-negative function w,(n ) defined on N (ng) X R, non-
decreasing in u and such that o, (n, a)€ [, for each ac Ry and

ICM e+ D) f(n,ym) | <o, (n, |y ), ne N (no), |y | < o005

d) there exists a function v, (n, u, v) defined on N(ng) X Ry X Ry, non-decreasing
in w and v and such that wy(n,a,b)el, for each a,be R, and furthemore

ICrm+1)gn,y ), Ty(m)| <op(n,|y@)],
[Ty ) 1), me N (50) , |y | < 00}

e) |Ty|<L|y| for yeD.

Then, corresponding to each bounded solution x = x (m)e Oy of (2.1), there
exists a solution y =y (n)e ®, of (2.2) suck that

(41) lim | B () y () —C () x ()| = 0.

Conversely, to each solution y =y (n)e O, of (2.2) there exists a solution
x=2x(n)e O, of (2.1) such that (4.1) holds.

Proof. Let x = x (%) be a solution of (2.1) such that |x| < p/3,p >0
for ne N (n,) and define the ball B, = {# ; | # |o, < p}. For ye B, we define
the operator

n—1

iy =x@+ 2 XK@ P XA+ Df(s,96)+806,y6), Ty )] —

8=ng

_gX(%)PaX—l(s + D[fG,y6) +glb,yE), Ty N,
for ne N (no + 1)
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If we set @i(ﬂ,§)=B<”>X<”>PiX-1(3+I)C(S—}—I), i=1,2, then,
n—1

(42) 1w <el3 +s§D| B e (n,s)||1C1s +Df(G, v+

IO R0 INC (4 086, () Ty +
F R B0 16,9116 64 1) f G,y () |+
+§}J B () |12, )| [CHs +1)g (s, (), Ty <
< ol3 +MK lgom’: (S,p)]llp+

7 ip o 1/p
ruk (S e, )] ruk (S aen|
8=='n.0 }

o YV
+ MK LZ « (s, p,Lp)] .

By virtue of the properties of v, and «,; (¢ and &) we may choose 7, so large
that

SR, o) <[olKMP  and 3 «l(s, e, Le) < [e/6KMP
§=no

$=ngy

and therefore from (4.2) it follows | ¥ (%) lo, < p, which shows that = (B,) < B,.
To establish that the mapping is continuous, fixe & > o,
#,€ N (729 + 1) such that

s 1p o lp
43, lzmﬁ(s,p)] +[2w’2’(s,p,Lp)] <e2KM.

s=ny _s=ny

and select

Suppose {y; (W)}ie1, v;€ By, and y; (n) -y (W)€ B, on every set N, (1),
m=0,1,2,... Then, for e N, (»,) we have

) — ()| < [2 b {[;;0 (B0 |12 (5 + 1)

s=ng

ny1—1

1p
L pi(9) —F (s, y ()] l]”] -+ [; (B 1@ |CH(s+ 1)-
) ip
8Ly, Ty () —g (s, 7 (), Ty (S))]H’”] } +

+.L;\;l ENCED, ‘q]llq {Lgﬂ UB2m) HC2 s+ DI yis)—

1/p oo
—f(s,y ()] \]v] + [;{ B2 | IC s+ D) [gl,yi(s), Ty () —
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i/p
—g (s, ¥ (), Ty ()] 1v] } < MK [G; + Gq] +

/o i/p o \ Up
+2 KM [(Zm’l’(s,p)) —I—(E m’z’(s,p,Lp)) ] <

S=ny 8=njy
<MK [G; + G,] +¢,

if we choose, according to (4.3) 7, sufficiently large.

By the uniform convergence on N, (7g) ,m =0, 1,---, 72, —1 of {3;(#)}
it follows that / (», v; (%)) —f (n, ¥y (»)) and g (n ,v,(n), Ty, (n)) — g (n, vy (n),
Ty (%)), uniformly on this set, and

n1—1

Gy 4+ Gy < [Z (C (4 1) [£ (5 2i ) —F (503 (D] PP +

8=ny

+ [12 (ICt s+ 1) [g (s, 7 0), i) —g s,y (), Ty (NI HF1ve

s=nq
as 7 —>o00.

Hence lim | 7y; — ¥ lo, = o, that is, 7 is continuous.
n—>0

The functions in the image space 7 (B;) are uniformly bounded for each
7 since v (B)c B,. The equicontinuity of the family ~ (B,) follows because
the functions in 7t (B,) are defined for a discrete variable #.

By Schauder’s fixed point theorem we conclude that the mapping  has a
fixed point in B, which is a solution of (2.2). To verify that (4.1) holds, observe
that we have

(4-4) IBy(m) —Cx () | <[Bm —Cm||x@]|+H + H,,

where

H, =:§o| B () X () Py X2 (s + 1) [£ (525 () +£ (5,9 (), Ty D1,

o0

Ho= Y I BO)X ) P X0 + 1) [f (5,5 () 25,2 (), Ty D]

s=n
Using ¢), 4) and Hélder’s inequality we get
& 1/p @ 1/p
HggK[Lm’{(S,p)] —i—K[Lmﬁ(&,p,Lp}] < egfz,
S=n S$=n

for ne N (), where », is sufficiently large.
If we take #,€ N (7,) such that

Zmﬁ’(&, p) < [¢/6KT", iwg(s, e,Lp) <
$=ng §=ng
< [¢/6K]7, | B () X () P, | < <f6 [Z (XG4 0f G,y )]+

FIXT 64086, 0, Y @)D)
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then using our Lemma 3.1 we have

Ng—1

H1=8§ |IB@) X () Py X-1(s+ 1)f G,y ()| +

+ 3B X )X+ 0f GO+

ng—1

T HIB@HXBXA 6+ DEC YO, Ty () |+

—i—n}—:lB(n)X(n)PIX‘l(s+I)g(-",y(s),Ty(s))l <

8=nhg
n—1 1/p n—-1 1/p
SK[Z&@,@] +K[Zw€(s,9,Lp)] +
8=ng §=Ng

ng—1

+S§IB<%>X(%)P1||X—1(s—!— I)f<5»_'y(s))|—{—

+ i)iIB(”>X(7Z>P1|IX—1<S+I>g(5:y<s),Ty<s))|—[—
) 1/p o) 1/p
+K[Z@’1’(ﬁ@)] +K[Zw€(s,p,Lp)] +

“rag—-1

+ 1B () X () Py | Lgn:oq X1 (s +0f G,y ()| +
+ [ X (s + I)g(s,y(s),Ty(S))l)] <efz, for lneN(nz).

Consequently for sufficiently large #, we have H; + H, < e and | B () —
—C ()| <¢fp if ne N (), and from (4.4) we obtain |B () y () —
—Cmyx(m)| >0 as n— oo,

The last statement of the theorem follows immediately. Let y = y (%)
be a solution of (2.2). Define

(45) )=y (n) —go X () Py X3 (s + 1) [F(5 () 4852 36, Ty ()] +

+ B X R XA D6, T80 30, Ty 6.

By the same arguments, from (4.5) it follows that x = x (%) is a solution of
(2.1) which belongs to ®@; and satisfies (4.1).
Thus the proof of Theorem 4.1 is accomplished.

Remarks 4.1. If we assume that C () is such that | C! (%) | << M,, then
&) and &) bold if | £ (n,y (1) | <@, (n, | y(m)]) and | g (n,y (), Ty(m)| <
<G ,|y®|,|Ty#)]) for ne N (ny), |y | < oo, where &, and @, are
of the same type as in Theorem 4.1.
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4.2. Conditions which assure ¢) in the particular cases when Ty (%) =

=K@, Dh(y(s) and Ty )= 2, K@ ,s)k(y (%) are given in

s=ny s=ng

[7, Ch. V].
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