ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

EsAvyAS GEORGE KUNDERT

Basis in a certain Completion of the s-d-ring over the
rational Numbers

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche,
Matematiche e Naturali. Rendiconti, Serie 8, Vol. 64 (1978), n.5, p. 423-428.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1978_8_64_5_423_0>

L’utilizzo e la stampa di questo documento digitale & consentito liberamente per motivi di
ricerca e studio. Non é consentito 1'utilizzo dello stesso per motivi commerciali. Tutte le
copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)
SIMAI & UMI
http://www.bdim.eu/


http://www.bdim.eu/item?id=RLINA_1978_8_64_5_423_0
http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e
Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1978.



RENDICONTI

DELLE SEDUTE

DELLA ACCADEMIA NAZIONALE DEI LINCEI

Classe di Scienze fisiche, matematiche e naturali

Seduta del 13 maggio 1978

DPresiede 1l Presidente della Classe ANTONIO CARRELLI

SEZIONE 1
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Algebra. — Basis in a certain Completion of the s-d-ring over the

rational Numbers. Nota | di Esavas GEorceE KUNDERT, presentata
dal Socio G. Zappa.

RIASSUNTO. — Si determinano diverse basi per un completamento di un s-d-anello
sopra il campo razionale.

INTRODUCTION

b

In [35] we promised to develop an “ analysis " in the completion & of
the s-d-ring 7 over the integers. It turns out to be expedient, to first replace
the integers by the field Q of rational numbers.

In the following article we make an attempt to introduce certain basis
in /. Each element can then be represented by a series with respect to such
a basis. Each basis is defined with help of an operator in &/ and the coeffi-
cients in the series may be expressed in terms of the operator. If an operator
A defines an A-basis, then we show that the dual operator A’ = E — A defines
always an A'-basis.

We illustrate the concept with three typical examples and their duals.
With help of these examples we can, at the same time, show:

(1) The classical difference calculus is in a certain sense subordinated
to our analysis.

(*) Nella seduta del 13 maggio 1978.

29. — RENDICONTI 1978, vol. LXIV, fasc. 5.
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(2) The classical Stirling numbers appear as coefficients for certain
basis transformations and we have therefore a natural and new interpretation
of those numbers.

(3) The classical Bernoulli numbers appear in three new interpretations.

Let & be the completion of the s-d-ring & with respect to the inteal
m = (x)* over the field of rational number Q. (See [4-6, 2] for notations
and definitions used in this paper). Let A be a linear mapping from & - .

DEFINITION. An A-basis of 2 is a sequence {z,} with z,€ &/ such that
there exists a subalgebra N, of & and a Nj-algebra homomorphism ca from

o onto N4 and such that for each element ae o we have @ = Z, (oA A" a) 2,
uniquely. n=0

Note that 1€ N, and that 64 («) = « for «€ N,. Since z, = 1-2, it fol-
lows that 6, A®z, =0 if m % n and o5 A"z, = 1, especially 64 (z,) =0
for 2 > o.

Let Azy = Z ®p 2, then opAM™z,=0=a,, for m >1. Therefore
Az, = o. "
Let Az = Z Bn2, then 6s Az, =B,=1 and 6aAA™2z = B, , =0 for
m > 2.
It follows that Az, = z,. Similarly one gets Az, = %, for z > 1.
o0
Next, if a = Z %, %, then o, = 65 A”a and

n=0
Aa = Z (6a A" @) z, = 2 (64 A" @) Azpyy
n=0

or

Aag = ianA.z

n=0

Especially also A (a-2) = a-A (@) for ae Ny and a€ o, so that A is automa-
tically Na-linear. Since

o< o0 o0
A E ocn3n+1) = 2 oy Ay = 2 Uy Zp = &
n=0 n=0 n=0

it follows furthermore that A must be surjective.
Examples of linear mappings with an A-basis:

Example (1). Let A=D,Np=KerD = Q,op=0c then {r,} (see
[4] for definition of ¢ and x,) is a D-basis. In this example we could also take
Z as ground ring in place of Q.

Example (2). Let A=D,= (K% =E—-K2=(2—D)D. (See [5]

for definition of K) and take Np, = Ker D, = {« + B¢} where ¢ = ‘21 2"y,
*,Be Q. =
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Note that ¢® = —e¢. Let ce Np, and a¢€ &, then recalling that D, is a
semi-derivation, we have D, (¢-a) = ¢-Dya 4+ 0-a —0-Dya. It follows that
D, is Np,-linear. One checks ecasily that D, is surjective, for this it is important
that the ground ring is Q and not Z. Now let op, (;) = ¢ which defines op,
uniquely (see Formula (I), [5]), as a matter of fact, it follows that op, (x,) = 0

for # > 2 and therefore if a = 2 o, Xn, then op, (a) = ay + ¢ € Np,.
n=0

Especially op, (¢) = ¢ if ce Np,.
Let Sp, (4) = @’ — op, ('), where a’e & such that D, (a") = a4, then
Sp, has the following properties:

(@) Sp, is well-defined [since if 4" is another element such that
D,(a") =a then Dy(a' —a'Y=a—a=o0=4a"—4a" e Np,= op, (&' —a'") =
=a —da' or 4 — op, (a") =a" —op, (a")].

(&) Sp, is Np,-linear [since Sp, (x-@) = (@+a@)’ — op, (x-@) = a-a’ —
— a-op, (@) = a-Sp, (a)].

(¢) DySp,=E

(@) Sp, Dy =E — op, = op,

(¢) op,Sp, = o. _
Let now y, = Sp, (1) = (— 1)* Y, (ém‘n-—I

k=2n n—1

above properties that D, y, = ¥, and op,(y,) =0 for = >1.

) 2k=2n 4, . It is clear from the

ot
We assert that {y,} is a Dy-basis. To prove this, let a = 3, «,, %, be an
' m=0

arbitrary element of &/. Now if {y,} is a Dy-basis, we should have

o0 o0
a = E (oD, Dt @) v, , but op,Dsa = E % 6D, D %y
n=0 m=0

= 2n+1
w0 a= ngo [(k=;+1 (— 1)mH+k (k B Z . I) o2n—F+1 o%) e
2n " ,
+ (kgn (— I>n+k (,% ——%) 2k ‘xk)] Yn -

It is sufficient to check this for ¢ = x,, by substituting the series expression
given above for y,. Note that we could have taken A =D, (See [6]) to obtain
infinitely many examples all similar to example (1) and (2). Next we will
give an example where the operator A is not a semi-derivation.

Example (3). Let A=H = E — DQ, where Q, is the operator defined
by Q, (@) = x,-a. Let Ng = Ker H = Q and oy = ¢ as in example (1). One
checks easily that H is onto, but for this it is again important that the ground

ring is Q and not Z. Let u, = S§ (1), where Sy is defined as in example (2)
o0

replacing D, by H. Computing this it turns out that #, = kz (— I)k Cr 24,

=N
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where the Cj are the Stirling numbers of the 1. kind. (See [3] for the defi-

nition used here). Computing cH” x; one gets for the H-series of x; the series
[~

(— 1)k Z B u,, where the BY are the Stirling numbers of the 2. kind. Sub-
n=0 ’

stituting the above series for #, and using simple propertles of Stirling numbers,

one sees that this series is indeed = ;.

This in terms guarantees that {«,} is a H-basis. _
Let A be any operator with an A-basis {z,} and let A’ = E — A, then

. ’
we can always construct an A’-basis {z,} as follows: Put Ny =N, , 64 =64
N (=]

& S .
and z, = (— 1)* ;‘ (n) #z;. Note that in this case , is not equal to one. We

=n
l4 14
have at once o4 (29) =1 and 6a(z) =0 for #n =>1.

Also:
A’z':(—l)"i % (2, — 2 )z(—l)”“li # 2y = 2y .
n “~\n k k—1 o\ — 1 k 7~1
Furthermore
VAN
Zp = (— I)nk=2n (%) P4
and since

oo
= Y Bun2n  With B, Na =
n=0

& (A ¥~ k R ,
Fm = 1;) B (— I)”k;n (%) = kgo (ngo (— 1" (n) @mn) &y = gYmk &3
with vy, € Na which shows that {z,} is an A’-basis. '

Example (1'). Let A =D and therefore A’ = E —D = K- (See [:]).
Since K is a Q-homomorphism from &/ onto o/ with

kernel = {oc~x(',} R so a = E Oy Xy, = Z Oy, Z Yk X =

o [/ oo

(o]
: 7 ! I3 ’
= _5_ (z;am'*{mk) xp == E:ockxk@ock———o-K"‘a
=0 \f=0 =0

Now if 6= Seixk  with Bi=oK*s,
=0

we have

[ed

= k;‘, cK* (ab) xp, = )‘z:]o (cK* a) (6K~* 8) x, = kgﬂ o, Br xr

because 6K—* is a homomorphism.
Let A, be the Q-algebra of sequences (ock) where o€ Q and define
dy (o) = (2 — %z41)- The mapping & is a semi-derivation in A,. We may
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then turn A, into a s-Z-ring. (See [2, 4]). Let A, be the mapping & — A,
o0

which associates to @ = Z o, 2% the sequence (a;). It is clear that A, is surjec-
=0

tive and injective. From the above it follows that A, is an algebra-isomorphism.
Since
: w [(£)
X = (— I>n Z B2
=0 \7
and

b= o B (2 =0 G0 ) = ()4

so that A, Dx, = d; A, x,, and from this follows that A, preserves also semi-
derivations. Part of the structure of & is therefore (algebraically) isomorphic
to A, and we have a new way to investigate the classical difference calculus.
By using the topology on &7, we can now use—formally—the methods of
modern analysis. Furthermore difference calculus appears now in an axiomatic
setting.

Vice versa we can get results for ./ from known facts in difference
calculus.

For example, if we would like to know what the series expansion of x’
with respect to the basis {x;} is, we can argue as follows:

Since A, (x,) = [(— I (z)] it follows that

sty = [ om (4)]
R I
g [E )

For » = 1 we get:

£ gl v ()]s = Ferr

o0
=1

where the B} zre the Stirling numbers of the second kind.

One might ask whether {#1'} is a A-basis for some operator A in 27 ? It

is clear that this would imply that lim x1 = 0, which is, however, not the
m—> o0

case. For the subalgebra &7, however, {x7'} is a A-basis, namely for the operator

Ll '7 . .
A defined by Ax, = % ?_: x. For this basis we have x; = ), (— 1)’ Cj, +7"
=0 0

m=

where CJ, are the Stirling numbers of the first kind.
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Taking {#,} as a basis of «/ then the numbers

WBI = (— 1) ,;:3 (—of (2) (’i)m

with fixed # would appear to be a natural generalization of the Stirling numbers
of the second kind and the elements of the inverse matrix ,Cj, a generalization
of the Stirling numbers of the first kind.
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