ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

ESAYAS GEORGE KUNDERT

Basis in a certain Completion of the s-d-ring over the rational Numbers

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **64** (1978), n.5, p. 423–428. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1978_8_64_5_423_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

RENDICONTI

DELLE SEDUTE

DELLA ACCADEMIA NAZIONALE DEI LINCEI

Classe di Scienze fisiche, matematiche e naturali

Seduta del 13 maggio 1978

Presiede il Presidente della Classe Antonio Carrelli

SEZIONE I

(Matematica, meccanica, astronomia, geodesia e geofisica)

Algebra. — Basis in a certain Completion of the s-d-ring over the rational Numbers. Nota I di Esavas George Kundert, presentata (*) dal Socio G. Zappa.

RIASSUNTO. — Si determinano diverse basi per un completamento di un s-d-anello sopra il campo razionale.

INTRODUCTION

In [5] we promised to develop an "analysis" in the completion $\hat{\mathscr{A}}$ of the s-d-ring \mathscr{A} over the integers. It turns out to be expedient, to first replace the integers by the field \mathbf{Q} of rational numbers.

In the following article we make an attempt to introduce certain basis in \mathscr{A} . Each element can then be represented by a series with respect to such a basis. Each basis is defined with help of an operator in \mathscr{A} and the coefficients in the series may be expressed in terms of the operator. If an operator A defines an A-basis, then we show that the dual operator A' = E - A defines always an A'-basis.

We illustrate the concept with three typical examples and their duals. With help of these examples we can, at the same time, show:

- (1) The classical difference calculus is in a certain sense subordinated to our analysis.
 - (*) Nella seduta del 13 maggio 1978.

29. - RENDICONTI 1978, vol. LXIV, fasc. 5.

- (2) The classical Stirling numbers appear as coefficients for certain basis transformations and we have therefore a natural and new interpretation of those numbers.
 - (3) The classical Bernoulli numbers appear in three new interpretations.

Let $\hat{\mathcal{A}}$ be the completion of the s-d-ring \mathcal{A} with respect to the inteal $m=(x_1)^*$ over the field of rational number \mathbf{Q} . (See [4-6, 2] for notations and definitions used in this paper). Let A be a linear mapping from $\hat{\mathcal{A}} \to \hat{\mathcal{A}}$.

DEFINITION. An A-basis of $\hat{\mathscr{A}}$ is a sequence $\{z_n\}$ with $z_n \in \hat{\mathscr{A}}$ such that there exists a subalgebra N_A of $\hat{\mathscr{A}}$ and a N_A -algebra homomorphism σ_A from $\hat{\mathscr{A}}$ onto N_A and such that for each element $a \in \hat{\mathscr{A}}$ we have $a = \sum_{n=0}^{\infty} (\sigma_A A^n a) z_n$ uniquely.

Note that $I \in N_A$ and that $\sigma_A(\alpha) = \alpha$ for $\alpha \in N_A$. Since $z_n = I \cdot z_n$ it follows that $\sigma_A A^m z_n = 0$ if $m \neq n$ and $\sigma_A A^n z_n = I$, especially $\sigma_A(z_n) = 0$ for n > 0.

Let $Az_0 = \sum_{n=0}^{\infty} \alpha_n z_n$ then $\sigma_A A^m z_0 = 0 = \alpha_{m-1}$ for $m \ge 1$. Therefore $Az_0 = 0$. Let $Az_1 = \sum_{n=0}^{\infty} \beta_n z_n$ then $\sigma_A Az_1 = \beta_0 = 1$ and $\sigma_A A^m z_1 = \beta_{m-1} = 0$ for

It follows that $Az_1 = z_0$. Similarly one gets $Az_n = z_{n-1}$ for n > 1.

Next, if
$$a = \sum_{n=0}^{\infty} \alpha_n z_n$$
 then $\alpha_n = \sigma_A A^n a$ and

$$Aa = \sum_{n=0}^{\infty} (\sigma_A A^{n+1} a) z_n = \sum_{n=0}^{\infty} (\sigma_A A^{n+1} a) A z_{n+1}$$

or

$$Aa = \sum_{n=0}^{\infty} \alpha_n A z_n.$$

Especially also A $(\alpha \cdot a) = \alpha \cdot A$ (a) for $\alpha \in N_A$ and $a \in \hat{\mathcal{A}}$, so that A is automatically N_A -linear. Since

$$A\left(\sum_{n=0}^{\infty} \alpha_n z_{n+1}\right) = \sum_{n=0}^{\infty} \alpha_n A z_{n+1} = \sum_{n=0}^{\infty} \alpha_n z_n = a,$$

it follows furthermore that A must be surjective.

Examples of linear mappings with an A-basis:

Example (1). Let A = D, $N_D = \text{Ker } D = \mathbf{Q}$, $\sigma_D = \sigma$ then $\{x_n\}$ (see [4] for definition of σ and x_n) is a D-basis. In this example we could also take \mathbf{Z} as ground ring in place of \mathbf{Q} .

Example (2). Let $A = D_2 = (K^{-2})' = E - K^{-2} = (2 - D) D$. (See [5] for definition of K) and take $N_{D_2} = Ker D_2 = \{\alpha + \beta e\}$ where $e = \sum_{n=1}^{\infty} 2^{n-1} x_n$, α , $\beta \in \mathbf{Q}$.

Note that $e^2 = -e$. Let $c \in N_{D_2}$ and $a \in \mathscr{A}$, then recalling that D_2 is a semi-derivation, we have $D_2(c \cdot a) = c \cdot D_2 a + o \cdot a - o \cdot D_2 a$. It follows that D_2 is N_{D_2} -linear. One checks easily that D_2 is surjective, for this it is important that the ground ring is \mathbf{Q} and not \mathbf{Z} . Now let $\sigma_{D_2}(x_1) = e$ which defines $\sigma_{D_2}(x_1) = e$ uniquely (see Formula (I), [5]), as a matter of fact, it follows that $\sigma_{D_2}(x_n) = o$ for $n \geq 2$ and therefore if $a = \sum_{n=0}^{\infty} \alpha_n x_n$, then $\sigma_{D_2}(a) = \alpha_0 + \alpha_1 e \in N_{D_2}$.

Especially $\sigma_{D_2}(c)=c$ if $c\in N_{D_2}$. Let $S_{D_2}(a)=a'-\sigma_{D_2}(a')$, where $a'\in \hat{\mathscr{A}}$ such that $D_2(a')=a$, then S_{D_2} has the following properties:

- (a) S_{D_2} is well-defined [since if a'' is another element such that $D_2(a'')=a$ then $D_2(a'-a'')=a-a=0\Rightarrow a'-a''\in N_{D_2}\Rightarrow \sigma_{D_2}(a'-a'')=a'-a''$ or $a'-\sigma_{D_2}(a')=a''-\sigma_{D_2}(a'')$].
- (b) S_{D_2} is N_{D_2} -linear [since $S_{D_2}(\alpha \cdot a) = (\alpha \cdot a)' \sigma_{D_2}(\alpha \cdot a)' = \alpha \cdot a' \sigma_{D_2}(a') = \alpha \cdot S_{D_2}(a)$].
 - (c) $D_2 S_{D_0} = E$
 - (d) $S_{D_2} D_2 = E \sigma_{D_2} = \sigma'_{D_2}$
 - (e) $\sigma_{D_0} S_{D_0} = 0$.

Let now $y_n = S_{D_2}^n(\mathbf{I}) = (-\mathbf{I})^n \sum_{k=2n}^\infty \binom{k-n-\mathbf{I}}{n-\mathbf{I}} \, 2^{k-2n} \, x_k$. It is clear from the above properties that $D_2 \, y_n = y_{n-1}$ and $\sigma_{D_2} \, (y_n) = 0$ for $n \geq \mathbf{I}$.

We assert that $\{y_n\}$ is a D_2 -basis. To prove this, let $a = \sum_{m=0}^{\infty} \alpha_m x_m$ be an arbitrary element of $\hat{\mathscr{A}}$. Now if $\{y_n\}$ is a D_2 -basis, we should have

$$a = \sum_{n=0}^{\infty} (\sigma_{D_2} D_2^n a) y_n, \quad \text{but} \quad \sigma_{D_2} D_2^n a = \sum_{m=0}^{\infty} \alpha_m \sigma_{D_2} D_2^n x_m,$$
so
$$a = \sum_{n=0}^{\infty} \left[\left(\sum_{k=n+1}^{2n+1} (-1)^{n+1+k} \binom{n}{k-n-1} \right) 2^{2n-k+1} \alpha_k \right) e + \left(\sum_{k=n}^{2n} (-1)^{n+k} \binom{n}{k-n} 2^{2n-k} \alpha_k \right) \right] y_n.$$

It is sufficient to check this for $a=x_m$ by substituting the series expression given above for y_n . Note that we could have taken $A=D_n$ (See [6]) to obtain infinitely many examples all similar to example (1) and (2). Next we will give an example where the operator A is not a semi-derivation.

Example (3). Let $A = H = E - DQ_1$ where Q_1 is the operator defined by $Q_1(a) = x_1 \cdot a$. Let $N_H = \text{Ker } H = \mathbf{Q}$ and $\sigma_H = \sigma$ as in example (1). One checks easily that H is onto, but for this it is again important that the ground ring is \mathbf{Q} and not \mathbf{Z} . Let $u_n = S_H^n(I)$, where S_H is defined as in example (2) replacing D_2 by H. Computing this it turns out that $u_n = \sum_{k=n}^{\infty} (-I)^k C_n^k x_k$,

where the C_n^k are the Stirling numbers of the 1. kind. (See [3] for the definition used here). Computing $\sigma H^n x_k$ one gets for the H-series of x_k the series $(-1)^k \sum_{n=0}^{\infty} B_n^k u_n$, where the B_n^k are the Stirling numbers of the 2. kind. Substituting the above series for u_n and using simple properties of Stirling numbers, one sees that this series is indeed $= x_k$.

This in terms guarantees that $\{u_n\}$ is a H-basis.

Let A be any operator with an A-basis $\{z_n\}$ and let A' = E - A, then we can always construct an A'-basis $\{z'_n\}$ as follows: Put $N_{A'} = N_A$, $\sigma_{A'} = \sigma_A$ and $z'_n = (-1)^n \sum_{k=n}^{\infty} \binom{k}{n} z_k$. Note that in this case z'_0 is not equal to one. We have at once $\sigma_{A'}(z'_0) = 1$ and $\sigma_{A}(z'_n) = 0$ for $n \ge 1$.

Also:

$$\mathbf{A}'z_n' = (-\mathbf{I})^n \sum_{k=n}^\infty \binom{k}{n} (z_k - z_{k-1}) = (-\mathbf{I})^{n-1} \sum_{k=n-1}^\infty \binom{k}{n-\mathbf{I}} z_k = z_{n-1}' \ .$$

Furthermore

$$z_n = (-1)^n \sum_{k=n}^{\infty} \binom{k}{n} z_k'$$

and since

$$x_m = \sum_{n=0}^{\infty} \beta_{mn} z_n$$
 with $\beta_{mn} \in N_{A'} \Rightarrow$

$$x_{m} = \sum_{n=0}^{\infty} \beta_{mn} (-1)^{n} \sum_{k=n}^{\infty} {k \choose n} z_{k}' = \sum_{k=0}^{\infty} \left(\sum_{n=0}^{k} (-1)^{n} {k \choose n} \beta_{mn} \right) z_{k}' = \sum_{k=0}^{\infty} \gamma_{mk} z_{k}'$$

with $\gamma_{mk} \in N_{A'}$ which shows that $\{z'_n\}$ is an A'-basis.

Example (I'). Let A = D and therefore $A' = E - D = K^{-1}$ (See [5]). Since K^{-1} is a **Q**-homomorphism from $\hat{\mathscr{A}}$ onto $\hat{\mathscr{A}}$ with

$$\begin{aligned} \text{kernel} &= \left\{\alpha \cdot x_0'\right\}, \quad \text{so} \quad a = \sum_{m=0}^{\infty} \alpha_m \, x_m = \sum_{m=0}^{\infty} \alpha_m \, \sum_{k=0}^{\infty} \gamma_{mk} \, x_k' = \\ &= \sum_{k=0}^{\infty} \left(\sum_{k=0}^{\infty} \alpha_m \, \gamma_{mk}\right) x_k' = \sum_{k=0}^{\infty} \alpha_k' \, x_k' \Rightarrow \alpha_k' = \sigma \mathbf{K}^{-k} \, a \, . \end{aligned}$$

Now if $b = \sum_{k=0}^{\infty} \beta_k' x_k'$ with $\beta_k' = \sigma K^{-k} b$, we have

$$a \cdot b = \sum_{k=0}^{\infty} \sigma \mathbf{K}^{-k} (ab) \, x_k' = \sum_{k=0}^{\infty} (\sigma \mathbf{K}^{-k} \, a) \left(\sigma \mathbf{K}^{-k} \, b \right) x_k' = \sum_{k=0}^{\infty} \alpha_k' \, \beta_k' \, x_k'$$

because σK^{-k} is a homomorphism.

Let \hat{A}_1 be the **Q**-algebra of sequences (α_k) where $\alpha_k \in \mathbf{Q}$ and define $d_1(\alpha_k) = (\alpha_k - \alpha_{k+1})$. The mapping d_1 is a semi-derivation in \hat{A}_1 . We may

then turn \hat{A}_1 into a s-d-ring. (See [2, 4]). Let Δ_1 be the mapping $\hat{\mathscr{A}} \to \hat{A}_1$ which associates to $a = \sum_{k=0}^{\infty} \alpha_k \, x_k'$ the sequence (α_k) . It is clear that Δ_1 is surjective and injective. From the above it follows that Δ_1 is an algebra-isomorphism.

Since

$$x_n = (-1)^n \sum_{k=0}^{\infty} \binom{k}{n} x_k'$$

and

$$Dx_{n} = x_{n-1} = (-1)^{n-1} \sum_{k=0}^{\infty} \binom{k}{n-1} x'_{k} = (-1)^{n-1} \sum_{k=0}^{\infty} \left[\binom{k+1}{n} - \binom{k}{n} \right] x'_{k}$$

so that $\Delta_1 \operatorname{D} x_n = d_1 \Delta_1 x_n$ and from this follows that Δ_1 preserves also semiderivations. Part of the structure of $\hat{\mathscr{A}}$ is therefore (algebraically) isomorphic to \hat{A}_1 and we have a new way to investigate the classical difference calculus. By using the topology on $\hat{\mathscr{A}}$, we can now use—formally—the methods of modern analysis. Furthermore difference calculus appears now in an axiomatic setting.

Vice versa we can get results for $\hat{\mathscr{A}}$ from known facts in difference calculus.

For example, if we would like to know what the series expansion of x_n^m with respect to the basis $\{x_j\}$ is, we can argue as follows:

Since
$$\Delta_1(x_n) = \left[(-1)^n \binom{k}{n} \right]$$
 it follows that
$$\Delta_1(x_n^m) = \left[(-1)^{nm} \binom{k}{n}^m \right]$$
 so $x_n^m = (-1)^{nm} \sum_{k=0}^{\infty} \binom{k}{n}^m x_k' = (-1)^{nm} \sum_{k=0}^{\infty} \binom{k}{n}^m (-1)^k \sum_{j=0}^{\infty} \binom{j}{k} x_j = (-1)^{nm} \sum_{j=n}^{\infty} \left[\sum_{k=n}^{\infty} (-1)^k \binom{j}{k} \binom{k}{n}^m \right] x_j$.

For n = 1 we get:

$$x_1^m = \sum_{j=1}^{\infty} \left[(-1)^m \sum_{k=1}^j (-1)^k \binom{j}{k} k^m \right] x_j \Rightarrow x_1^m = \sum_{j=1}^{\infty} (-1)^{m+j} B_j^m x_j$$

where the B_j^m are the Stirling numbers of the second kind.

One might ask whether $\{x_1^m\}$ is a A-basis for some operator A in $\hat{\mathscr{A}}$? It is clear that this would imply that $\lim_{m\to\infty} x_1^m = 0$, which is, however, not the case. For the subalgebra \mathscr{A} , however, $\{x_1^m\}$ is a A-basis, namely for the operator A defined by $Ax_n = \frac{1}{n}\sum_{k=0}^n x_k$. For this basis we have $x_j = \sum_{m=0}^j (-1)^{j+m} C_m^j x_1^m$ where C_m^j are the Stirling numbers of the first kind.

Taking $\{x_n^m\}$ as a basis of \mathcal{A} then the numbers

$$_{n}\mathbf{B}_{j}^{m}=\left(-\mathbf{I}\right)^{j}\sum_{k=n}^{j}\left(-\mathbf{I}\right)^{k}\binom{j}{k}\binom{k}{n}^{m}$$

with fixed n would appear to be a natural generalization of the Stirling numbers of the second kind and the elements of the inverse matrix ${}_{n}C_{m}^{j}$ a generalization of the Stirling numbers of the first kind.

LITERATURE

- [1] P. BACHMANN (1968) Niedere Zahlentheorie, 2-ter Teil, Chelsea Publishing Co.
- [2] Th. A. GIEBUTOWSKI (1976) Deteal-adic Completions of s-d-Rings and their s-d-Structure, « Journal of Algebra », 42, 142-159.
- [3] H. W. GOULD (1972) Combinatorial Identities, Morgantown Priting and Binding Col.
- [4] E. G. KUNDERT Structure Theory in s-d-Rings, Nota I, «Acc. Naz. Lincei», ser. VIII,
- [5] E. G. KUNDERT Linear operators on certain completions of the s-d-Ring over the integers, Nota I, «Acc. Naz. Lincei», ser. VIII, 3.
- [6] E. G. KUNDERT Linear operators on certain completions of the s-d-Ring over the integers, Nota II, «Acc. Naz. Lincei», ser. VIII, 4.