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Teorie relativistiche. — 7Ve Ehlers-Rindler problem in cylin-
drical symmetry. Nota 11 di Mauro CARFORa, presentata ® dal Socio
C. CarrTanEo.

RIASSUNTO. — Si rimanda al sunto premesso alla Nota I in questo volume, p. 73.

4. ENERGY-MOMENTUM TENSORS FOR THE SHELLS

According to our hypotheses, the energy-momentum tensor for the inner
shell has the form

(20) Ca= @+ 37 po) i; il 1 Ei G VPV (inner shell)

d@; is the unit velocity four-vector; V{” form a triad of orthonormal spatial
vectors spanning the hyperspace orthogonal to #;; §(«x) are the principal
stresses, and [y + %7, eolc” is the proper surface mass density. It includes
matter density @, as well as electrostatic energy-mass density. In a similar
way the expressions for the principal stresses § () include a mechanical stress
term p (o), to be determined, as well as a known maxwellian stress term:

(21) gy =p)—3rp , J@ =p +Lree,
73 =p@3) +1r00.

The inner shell is at rest with respect to S;. . That is, the time tracks of its
material elements are the trajectories of S; labelled by » = #»,. Following
such a remark, one can write:

(22) i@t =9 () |[[— 9 By (7’0)]% =
@ @ @
S 1 YRS N
Y1 —(3,2)%c y1—@(3,2)%c

The remaining vectors V¢ are then uniquely determined by orthonormalify
with respect to #@*.
The outer shell is rotating with respect to S;, namely with respect to the

inner shell, with a known standard angular velocity ©, of magnitude
W = oRyA. Hence:

(22,> 742 = (O, _-—(’)/5 y Oy ——-———A ) y
Y1 — W2/ Y1 — W2/

(*) Nella seduta del 14 gennaio 1978.
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#® being the unit velocity four-vector. According to the remarks of section
(3), a current flows in the outer shell, and we have to assume for it a perfectly
conducting material structure. The question arises what expression must
be assumed for its energy-momentum tensor C;z. For this purpose, let us put
ourselves in the frame S comoving with the outer shell. With respect to S,
on the shell, there is a surface charge density

N & N
PET = ey
128G, (R\™ 1—0(1,2)® (2, 3)[ ]
[ c () =% G, )le)-G—w @, I | P

as well as a surface current density j; = (g +u;up)]Jb. We consider the
outer shell vealised, via a limiting process, from a shell of finite thickness <, with
a volume charge density pe and in which the current fge fows. [t is easy to see
that, for e — o0 <+, only p gives rise to an em. contribution to the energy-
momentum tensor Cif, and we can write

(23) Civ= (o + 3Ry D214 + 2 g () VIV (outer shell):

. . . . (@) .
#; is the unit velocity four-vector given by (22"); Vi form a triad of ortho-
normal spatial vectors orthogonal to #; ; p, is the proper mass density of the
outer shell; ¢ («) are the principal stresses given by:

(24) g(=p(10)—5RE , 7(@=p0 +3R 5,
7(3)=p(3) + 3 Rep*,

? (x) being mechanical stress terms.

5. HIGHER ORDER GRAVITATIONAL JUNCTION CONDITIONS

(20) and (23) give the tensor components Cy and Cj following from the
structural hypotheses we have assumed about the shells. On the other hand
such components are obtained too, as functions of the undetermined para-
meters &, B, v (1,2),w (2, 3), imposing the following higher order gravi-
tational junction conditions on X and X, [2]:

(25) 5{g™ [gir] fim — 7" ([gimi] + [Zmri]) + & [£1m,i) Fdry =
= —3 Cau—1%gu(oCi,
25y 3" lawil ni — " (Lgini) + Lgani]) + &
= — 1 (Cit — hen Ro) Ch) .

"
" Lgim, i) mitr, =

Eliminating Cy, and Cigy between (20), (23) and (23), (25) respectively, we obtain
ten independent functional relations, which give the ten - unknown quantities
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g),qg(@,v(1,2),w(2,3) k, b, B, as functions of the data of the problem
o Moy Po»70, Ry, W
Four relations at once yield:

(26) g(i)=o0 , @) =0 , ¢g()=o0 , g@B)=o.

The null value for §(1) and ¢ (1) follows from the relations C #* = o and
C;; 7t = o, algebraic consequences of (25) and (23') respectively. They state
nothing but that ¥ and X are the histories of the shells. The null value for
d(3) and ¢ (3) follows from the relations §(1) + §(3) =0 and ¢ (1) +
+ ¢ (3) = o, which hold for the sources of the Levi-Civita’s metric (4) with
R@)=r.

From (26) we obtain the radial and axial stress terms acting in the shells:
P()=—p@B3)= 705, for the inner shell; p (1) = — p (3) = LR, 52, for
the outer shell. For both, a pressure is present in the radial direction, and a
tension in the axial direction. In each shell, such stress terms hold together
the material elements against the repulsive coulomb interaction acting bet-
ween them.

The form rather involved of the remaining six relations implies that it
will be almost impossible to find solutions for 4, B, §(2),¢(2),v(, 2),
w (2, 3) explicitely expressed as functions of the data of the problem. However
it is possible to display such solutions as simple functions of physically measura-
ble quantities. For these latter we mean the magnitudes that the standard gra-
vitational fields, in A, Ay, Ay, respectively,

Gir = — $ouIn(—ge) , Gi=—3%¢0;In(—gw),

Gi=—1c0hn(—gi

assume on the hypersurfaces & and TV [3], [4],
Following such remarks, we obtain for the Lewi-Crvita's masses & and B:

(27) b=—[3170 (B (2) — T ® +7(G (ro) + G o)L,
(27) B = — [5* + 3 A% (Rolr)® xRo (P (2) — o &) +
+ AR, (Rof70)" (G (Ro) — G (Ro))/2].

Their negative value corresponds to the attractive character of the gravita-
tional fields G and G in the regions A, and Aj respectively. The physical

(1) That is, on %: G’ (ro) = lim [g11 G;g, (ro — B,
e—>04
and
G(r) = lim [g"Gi(ry+e)F; on :G(Ry) = lim [g"G}(R,— )],
e—=>0+ &> 04

and

An

G(Ro)— hm (g G} (Ry + 9]¢,



MAURO CARFORA, The Ehlers—Rindler problem in cylindrical symmetry 189

interpretation of the constants 4 and B comes. out particularly clearly in the
newtonian approximation. To first order in the gravitational constant y,
one obtains:

(28) bt =37 (B + 3700001,
(28") B %—%7’0(ﬁofg + 57 P?))X—%Rn o c® (1 + Rye?h) x .

Hence — 2 bly measures the proper emergy density per unit length of the inner
shell. The constant—2 By, , besides the previous term, gives the proper material
energy density as well as the rotatiomal energy density per unit length of the
outer shell.

Such an interpretation seems to be in accordance with the relative defi-
nition and decomposition of the total gravitational field energy proposed by
C. Cattaneo in [5].

. The relation for the magnitude, on %, of the linear standard velocity
of S, with respect to S;,w (2,3) = RyA?w (2, 3), yields:

w (2, 3)c
(29> 1 —u? (2 ’ 3)/52
7 1 —2 Ro A (Rofro)”-G (Rp)[c2] 1 — W2/e2

Hence w (2, 3) vanishes only when W or y, does. That is, the motion of the outer
shell and the existence of a gravitational coupling induce a muinal rotation bet-
ween the frames Sy and Sg. This effect, which gives rise to Coriolis-type forces,
is the well known Z/hirring effect, [7].

In the newtonian approximation one obtains:
(30) o (2,3) 2= wERoy.

that is, just a Thirring-like value.

In a similar way one finds the magnitude, on X, of the linear standard
velocity of S, with respect to S,,v(1,2) =70 (1, 2):

(31 v, Bl tinetd® @@,

1 —22 (1, 2)/c AT I —27,G" (rg)]c? 1 — @2 (2, 3)/f

Where @ (2,3) =70 (2,3)=rw (2, 3)/[RyA%,w (2, 3) being given by
(29), is the magnitude, on X, of the linear standard velocity of S, with respect
to the inner shell.

Again, v (1, 2) vanishes only when W or y does. The rotation of the outer
shell not only induces the mutual rotation between S, and S,, but also between
Sy and Sy. This is a new, vanishingly small, effect, absent in the newtonian
approximation.
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To second order in the gravitational constant y, one finds:
(1) o (1,2) 22— 7 Ropo ¢ (B & -+ 70 p0) 0 -

Hence in a newtonian approximation the stationary frames S, and S, are at
relative rest. They define a single stationary frame S. which rotates with respect
to the inner shell with linear velocity (2, 3) o2 g 279 Ro ). Notice that
such a rotation rate does not depend on the mass distribution of the inner shell.

From w (3,2) = —w (2, 3) and v (2, 1) = —v (1, 2), one obtains, by
means of (15) the magnitude, on X, of the linear standard velocity of the
inner shell with respect to S;:

@W(3,2)+v(e,I)

(32) A e RO EIOE

To first order in the gravitational constant y, (32) reduces to: v (3, 1) o
=@ (3,2) = — ¥ Rowy, in accordance with our previous consider-
rations.

Finally for the tangential stresses §(2) and ¢ (2) acting in the inner and
in the outer shell respectively, one obtains:

(33) Y170 3(2) = — 437 (B &+ L 70 00) +

(1—@t(2,3)A)2 (1, 2) ) \
0@, )G —d 1, @ 276 ()

+

1 — @2 (2, 3)/E , 2
+ 1 + 702 (2 3> 52 (G (70> G <70>>/5>

(33" %XROQ (2) = — % xRo (o & + %Ro p%) +

ot et ) [ l) S8

I — W22
I+ Wi

4 AR, (G (Ro) — G (Ry))/e?

To first om’er in the grawmtzonal constant y, such expressions yield: p(2) ==
— %7 0, 2 (2) > — uo Ry 0, respectively. 1In the former one recognizes
the usual mechamcal tension balancing the maxwellian tangential pressure
acting in the inner shell. The latter represents the usual centrifugal tensions.

6. ELECTRIC AND MAGNETIC FIELDS

According to our previous considerations, the rotation of the outer shell,
with respect to the inner one, induces a mutual rotation among all the frames
S«. The constants w (2, 3) and v (1, 2) which describe such 7hirring-like
effect, are given by (29) and (31). . Their general behaviour was discussed
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qualitatively in the previous section. From v (1, 2) and w (2, 3), by means
of (18), (18'), we can obtain the values of the pseudo-scalars ¥, ® , A, which
give the e.m. tensor components F?, F14, Fia, respectively. Then the pro-
blem of finding the e.m. fields in each region A, can be considered solved.
We give the results in each region Ay:

A,, the inner region.

With respect to the static frame S,, a magnetic compass would experience
an axial magnetic field Hs :

_ v, D v(2,1) 1+ A
(34) Hy =Y (—g44) b= e ( Z —— p I—i—/zr’(;

everywhere regular but not constant. It attains its maximum value on the
symmetry axis, ' = o, its minimum on X ,» = 7,. Hence there is a radial
magnetic pressure which decreases going from the axis to the hypersurface
3 where the inner shell evolves. The magnetic field is “ held together ”
against the gradient of such a pressure by its own gravitational attraction.
Indeed the presence of Hg: in A, gives rise to a radial standard gravitational
field given by Gi = — 2 & & 8}.J(1 + 4. Since Gi = O (x), the presence
of such a gravitational field is a wvanishingly small, post-newtonian, effect.
Apart the slow-varying radial dependence, the magnetic field Hs  is the sum
of two terms: ¢’ v (3, 1)Jc and — o' v (2, 1)[c. At once, in the former one reco-
gnizes the surface convection terms, which arises from the rotation, with lincar
velocity v (3, 1), of the inner shell with respect to S,. While, in order to explain
the presence of the other term, we need some further considerations. We
shall see, in the following sub-section, that, in the intermediate region A,,
an S,-observer experiences a radial electric field E,. Such a field gives rise,
with respect to S;, to an axial magnetic field, that, on T, values:
Hy (re) = —v (2, DE (o)fc 1 —2 (2, D] = — o' v (2, 1))e. Just the
term, whose irilterpretation we are looking for.

Following such a remark, it is fairly significant that (34) can be written,
on 2, in the form

r Iv ’I
(347 Hy — 3y = ¢ ——(%—>

bl

in which one can recognize a classical junction condition for the magnetic field.

The formula (34) takes clearly into account ke interactions between inertia
and electromagnetism. The constants v(3,1) and v (2,1), as we have seen
in the previous section, vanish only if ome ignores the gravitational coupling
or when the shells are at velative rest. Only tf one of such conditions holds the
magnetic field Hy as well as the gravitational field it generates, vanishes.

To first order in the gravitational constant y , (34) yields to a particularly
simple result:

(O]
(35) Har o= — o @ Ry 7y Pcc x-
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Hence in the newtonian approximation only the convenction current term contyi-
butes to the magnetic field. The field is constant, the inner region A, is flat, the
Srame S, is inertial.

The interpretation of the field (35) is remarkably simple. In the newto-
nian approximation, according to our results, the inner shell rotates, with
respect to the inertial frame S,, with the Thirring angular velocity o (3, 1) ==
— o ?? Ry wy. Its relative surface charge o' reduce to py, and we thus expect
to find within it a constant axial magnetic field Hy = — ug ¢ Ry 7, po @0Y/c .
Just the field (35) we have found.

The magnetic field (34) is the field an S;-observer would experience in the inner re-
gion A;. The question arises of what e.m. fields an observer comoving with the inner shell
would experience in A;. Such fields are easily obtained by means of the transformation law
for the tensor components F*' ;

(36) Fii (Al) — @)%/ F1'21 , F’ié (Al) —_ ®’2, Fl'z”

Fii (A;) and Fi2 (A,) give rise to an electric and to a magnetic field respectively. Their expres-
sions, which can be easily worked out, are omitted here, I shall limit myself to observing that
to first order in the gravitational constant ¥, (36) yields:

w
(36) EfAy=o , Hj(A)=—u@Ryr £y,

Hence an observer comoving with the inner shell experiences in A, the same magnetic field
there experienced by an S;-observer.

Ay, the intermediate region.

With respect to the static frame S,, one experiences a radial electric
field E, :

, —b o
37) E,=pro[t —v(1,2)@(2, 3)/F (":F) 1 __IH (7{_/17,())—217] % ’

Apart from the geometrical factor giving the radial dependence, the electric
field t37) is the difference of two terms: p and pv (1,2)@ (2, 3)/c% The
Jormer is the surface charge density of the inner shell with respect to S,. The latter,
an apparent source term, arises from the transformation of the axial magnetic
field Hj., present in A, in a radial electric field &;, on account of the relative
rotation of S, with respect to S,. Indeed, on X, one obtains:

&, (o) =v (1, 2) Hy Grle (1 — 22 (1, 2)|N = — gv (1, 2) @ (2, e

Allow me to add here that the presence of such an apparent source term, as
of other similar terms, could be clearly understood also by means of the relative
formulation of electromagnetism established by P. Benvenuti [1].

On 3, (37) can be written as

Ey(ro) —& 1 (ro) = ¢ .

That is, in the form of a classical junction condition for the normal disconti-
nuity of the electric field through a charged thin shell.
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If the shells were at velative vest, or if we did not take into account the gra-
vitational interaction, B, should become, apart from a geometrical factor, the
usual electrostatic field outside a charged cylindrical shell. Otherwise its strength
increases by the positive apparent source term — pv (1,2)% (2, 3)[2 Swuch
a term represents an extremely little post-newtonian corrvection, small of third
order in the gravitational constant ¥.

In a newtonian approximation (37) reduces to:

(38) E; o po7of7 .

Ay, the outer region.

With respect to the static frame Sz, one experiences a radial electric

field Ej:

I —o(1,2)@ (2, 3)E 7\ ®
(39) Ei = 0470 SELLIC ) ( ) :

(=@ (2, DA —2* (2, 3)[AH Ry

i —K I
AT —K Ry 7

Apart from the different radial dependence, (39) is the same electric freld (37)
present in A,, now expressed in the Sy-adapted coordinates (x'). Indeed with
respect to Sz, on 2, the field (37) becomes

E1(re) = E, r)l(1 —w (2, 3D = By (o) -

Following such remarks we find again that the outer shell is uncharged with
respect to Sy, (that is, with respect to the inner shell). Indeed (39) can be written,
on 2, in the form

Ei (Ro) —61(Ry) =0,

in which one can recognize the classical statement for the electrical neutrality
of a thin shell. In agreement with such remarks, in a newtonian approxi-
mation (39) reduces to: Ej o pg 7o/ 7.

7. SOME CONCLUDING REMARKS

According to Rindler [6], our problem can be considered the Mach-
equivalent view of a charged cylindrical thin shell in uniform rotation with
respect to the * wuniverse .

Within such a shell, a magnetic compass, (at rest with respect to the

. ) . . - _Fa
“universe "), would experience an axial magnetic field Hy = —75 * ,®

being the rotation rate of the shell, 7, its radius, ¢ its surface density of charge.
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Regquiring a true physical veciprocity, this same field must be experienced
also if, changing our point of view, we regard the shell at vest and the universe
rotating rvound it. Henmce, by analogy, we would find a similar field within a
charged shell surrounded by another coaxial massive shell rotating with vespect to it.
Our results seems to be in accordance with such a conjecture. This is particularly
clear in a newtonian approximation, in which we obtain an axial magnetic field
(¢fr. (33), (36"), that agrees fully with H,.

The “ neutral "’ case, in which also the inner shell is supposed to be unc-
harged, should deserve particular attention. Of course, in its solution neither
electric nor magnetic fields appear. However, from the gravitational stand-
point, our neutral problem corresponds to a more-general situation than those
described by Thirring, Frehland, Pietronero, and it gives rise to physically
meaningful results.

We deal with it in another paper.
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