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I. D ebroey e J. A. Thas, Semi partial geometries, ecc. H?

Geometria. — Semi partia l geometries in PG (2 , q) and PG (3 , if). 
Nota di I n g r id  D e b r o e y  e J o s e p h  A. T h a s , presentata <*> dal Socio 
G. Z a p p a .

R iassunto. — Si determinano tutte le geometrie semiparziali immergibili negli spazi 
proiettivi PG (2 , s) , PG (3 , s).

I. I n t r o d u c t io n

A  semi partial geometry [7] is an incidence structure S =  (P , B , I) 
for which the following properties are satisfied:

(i) any point is incident with u +  1̂ (u >  1 ) lines and two distinct 
points are incident with at most one line;

(ii) any line is incident with $ 1 (s >  1) points and two distinct
lines are incident with at most one point;

(iii) if two points are not collinear, then there are a (a >  o) points 
collinear with both;

(iv) if a point # and a line L are not incident, then there are o or t  (t >  1)
points x i and respectively o or /  lines lui such that # I I x % I L.

Let I P I =  v and | B | — b. Then b (s +  1) =  v (u +  1) and v =  1 +
T  H- 1) s ( i  ~i~ M (s — t  -j- I) l&) [7]• Also t2 oc (u -j- I) t , D =  (ti (t — I) T-
T s — I — a)2, +  4 {(u +  1) — a)  is a square, except for u — s =  t =  a  =  I,

and ((u +  1) s +  ( v — i) (u ( t — 1) +   ̂— 1 — a +  ]/D)/2)/]/D  is an in- 
teger [7].

If the points (resp. lines) x  and y  (resp. L and M) are collinear (resp. 
concurrent), then we write x ~ y  (resp. L ^  M); otherwise we write x *  y  
(resp. L 'p M).

If a point x  and a line L are not incident, then [x , L) denotes the number 
of lines which are incident with x  and concurrent with L.

A  semi partial geometry is called a partial geometry iff for any point x 
and any line L, with x ï  L, we have (x , L) =  t [2]. Equivalently S is a partial 
geometry iff a — (u +  1) t.

A  semi partial geometry (resp. a partial geometry) for which t =  1, 
is called a partial quadrangle [5] (resp. a generalized quadrangle).

(*) Nella seduta dell’i i  febbraio 1978.
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Recently all partial geometries with B a lineset of PG (n , q) , n >  2 , P 
the set of all points of PG (n , q) on these lines, and I the natural incidence 
relation, were determined (the case t  — 1 was handled by F. Buekenhout 
and C. Lefèvre ([4], [11 ]), the case t >  1 by F. De Clerck and J. A. 
Thas [8]).

In this paper we determine all semi partial geometries with parameters 
u , s , t  and a , which are embeddable in PG (2 , s) or PG (3 , s).

2. T h e o r e m . I f  S =  (P ,B  , I) is a semi p artia l geometry with parameters 
u , s , t  and  a, which is embedded in the projective plane PG (2 , s), then S is 
a dual design.

Proof. As in a projective plane any two lines are concurrent, it is clear 
that S is a partial geometry with parameters u , s and t  — u 1. So S is a 
dual design [3].

3. T h e o r e m . I f  S =  (P , B , I) is a semi partia l geometry with parameters 
u , s yt  and  a, which is embedded in the projective space PG (3 , s), but not in 
a PG (2 , s), then the follow ing cases m ay occur\

(a) S is a classical generalized quadrangle\

(b) S is the design of points and lines of PG (3 , s);

(c) P is the set of points of PG (3 , s) which are not on a given line of 
PG (3 , s), and  B is the set of lines of PG (3 , s) which have no 
poin t in common with that line\

(d) P is the set of a ll points of PG (3 , s) and  B is the set of all lines 
which are not totally isotropic fo r  a given symplectic polarity of
EG (3 ,*);

(e) S is a Des argues configuration in  PG ( 3 , 2 ) .

Proof. If S is a partial geometry, then (a), (b) and (c) are the only cases 
which may occur ([4], [8]).

Now we suppose that S is not a partial geometry. Then u >  s [7] and 
t* <  a <  ut [7].

If t  =  I , v =  I +  -T 1) j  (1 +  usja). So v <  ss +  .s*2 +  s +  1 implies 
u (u +  1) <  a (s2 +  — u), and consequently u (u +  1)  ̂<  u (s2 +   ̂—  u)

o r  u  <  s — I +
* +  1

<  s , a contradiction. So we may assume that

2 < . t  <: s (if t  =  s I , S is a design and thus a partial geometry).

Let V  be a plane of PG (3 , s). As in PG (3 , s) any line has at least one 
point in common with V, and as B ^  0  , V  has at least one point in common 
with P. Now let M7 be the set of all points of V  which are on a line L e  B 
contained in V. Further let =  (V O P) — M^.
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A priori there exist three types of planes in PG (3 , s)\ A  plane V  is said 
to be of type I iffM^ =  0 ,  of type II iff there exists a line L g B  such that 
Mi =  {x e  P II x  I L}, and of type III iff there exists a line L g B  and a point 
z e Y  which are not incident and such that M7 ^ { x e  P || x  I L} U {#}.

Suppose that there exists a plane V  of type I. Then b — | Mq | (u +  1) 
and so \M% | =  vf(s +  1) (1). If x  is a point of Mo, then the number of ordered 
pairs (jy , z) for which x ~ y  , y ~ z  and z e  Mo is given by (|M q  | — 1) a =  
— (u +  1) su, and so | Mo | =  1 +  (u +  1) -sulot (2). From (1) and (2) there 
follows that a =  (u +  1) t y a contradiction. So any plane of PG (3 , s) is of 
type II or III.

Remark that there always exists a plane of type III (if x  G P and if L 
and M are two lines of B incident with x> then the plane containing L and M 
is of type III). Now let V  be a plane of type III. If L is a line of B in V, and 
if x  G M i is not incident with L, then there is at least one line M of B in V  which 
is incident with x. As M ^  L , ( x  , L ) =  t. Since any line of B in V  is con­
current with L, there are exactly t  lines of B in V which are incident with .r. 
From t  >  2 there follows that for any point y  T L there is a line M of B in V  
which is not incident with y .  Consequently any point ofM ^ is incident with 
exactly t  lines of B in V.

Hence the incidence structure Sv =  (M^ , By , Iv), with B y — { L g B | | L  
is in V} and Iy induced by I, is a partial geometry with parameters 
11 =  t — I , s' =  s and f  =  t. This implies |m 7 | =  (s +  1) (s +  1 — s/t). 
And so, as b =  |M^ | (u +  1 — t) +  | m 7 | tf(s +  1) +  | Mq [ (u +  1),  we have 
I Mo I =  vj(s + 1 )  —  (s +  I — st\(u  +  1)) (s +  I —  sjt). Moreover, by consi­
dering the planes containing two non-collinear points of S, we see that a is 
divisible by t2.

Now we suppose that all the planes of PG (3 , s) are of type III. Then 
considering a line L of B and all the planes through L, we get: v — (s +  1) 
(Mq -f- M! —  s — 1) s -f- I , where M 0 =  vj(s -|- 1) — (s T* 1 —  stj(u -T 1)) 
(s +  I — s/t) (and M t =  (s +  1) (s 1 — sjt). This implies that u — (t — 1) 
is +  1) (3). On the other hand the number of ordered pairs (x , V), where 
x e  P and V is a plane of PG (3 , s) containing x, is given by v (s2 +   ̂ +  1) =  
=  (sz +  s2 +  +  1) (M 0 + M j ) .  This together with (3) implies that v =  s3 -f-
+  +  I, and so P is the set of all points of PG (3 , s). At last we
remark that v =  1 +  (is — s +  t) s (1 +  (t — 1) (s +  1) (s — 1 +  i)/a), and so 
a =  (ts —  s 1) (t — 1). As t2 I a and  ̂ is a prime power, there follows easily 
that t  =  s. Consequently M t =  s2 +  s , M 0 =  1 and S =  (P , B , I) is a semi 
partial geometry with u =  s2 —  1 , s =  t  and a =  i*2 (s — 1). We remark 
that for any plane V  the structure Sy is a dual affine plane. Now it is imme­
diately clear that S'==-(P , B', I'), where B' =  {lines of PG (3 , j ) } \ B  and 
where I' is the natural incidence relation, is a generalized quadrangle with 
parameters u' =  s and j' =  s. From the theorem of Buekenhout-Lefèvre [4] 
there follows that S' is the generalized quadrangle W (s) arising from a sym- 
plectic polarity 71 [9] of PG (3 , s). In other words B is the set of all lines which 
are not totally isotropic [9] with respect to iz.
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Now we consider the case where there exists at least one plane V  of type 
II. From b =  I +  (s +  1) u +  | Mo | (u  +  1) there follows that [Mo | == 
=  v\{s +  1) — I —  usj(u +  1) (4). If x  is a fixed point of M^, then the number 
of ordered pairs (y  , z ) e  P x P  such that ^ ~ y  , y  ^  z  and z e  Mo, is given  
by us (u +  I — t) — I Mo I a, and so | Mo | =  us (u +  1 — £)/a >  0 (5)* Let 
.r be a fixed point of M^. Then the number of ordered pairs ( y  , #) e P x P  
such that ^ y y  ~  z  and ^ e V f i P ,  is given by (u +  1) su =  +  1 +
+  I Mo I —  1) a, and so |Mq |:=  us (u +  i)/a — s (6). From (5) and (6) there 
follows that a =  ut, and from (4) and (5) there follows u =  s. Consequently, 
D =  i - f  4 «? (/ +  1 —-t) [7]. As D ^ 5 , D  must be a square [7], and so 
there exists an integer m  such that  ̂ (s +  1 — t) =  m ( m  +  1). As s is a prime 
power, s divides m o r s  divides m  +  1. So we have m < s  1 — t  <  s < . m  1
and thus t  — 2 and s =  m 1. We conclude that u =  s , t — 2, o l  — 2 s  
and D =  (2  ̂— i)2. As t21 a , j* =  2h for some integer h . Finally ]/D | (u +  1) 
s +  (y — 1) (u (t — 1) -\- s — I — a +  y D)/2 [7] implies that u =  s =  t  =  2 
and a =  4 o r ^  =  . f - 8 , / = 2  and a =  16. In the first case S =  (P , B , I) 
is a Desargues configuration in PG ( 3 , 2 ) .

Now we prove that the last case cannot occur. Suppose that u =  s =  8 , 
t  — 2 and a — 16. Then |Mq | =  28̂  for any plane V  of type II. I f  W is a 
plane of type III, then |M ^ | =  o , |M ^ ] =  45 and | Bw | =  10. Let Vj be 
a plane of type II and let x  and y  be two points of Mo1. Then as a >  o, there 
is at least one plane V2 of type III containing #  and y.  As |M o21 =  o and Sy2 
is a partial geometry with parameters s' =  s , u =  1 , t' =  2, there holds 
IV2 D Vj f i P I =  5. This implies that there are exactly 4 points of Mo1 on the 
line joining x  and y.  So Mo1 is a {28 ; 4}-arc, i.e. a maximal arc [1].

Now we consider a line L e  B. As u — 8 and as in any plane there are 
at most two lines of B incident with a given point, there are exactly 8 planes 
of type III and one plane of type II containing L. Now let j  be a fixed 
point of P, and let L ^ L ^ - ^ L g  be the 9 lines of B incident with x.  
Through L 0 there is just one plane V 0 of type II. In this plane there is 
just one line R 0 different from L 0 and incident with a;, which contains no 
point of Mo °. So R0 is a tangent to P, and consequently the plane contain­
ing R 0 and L $, i e  {1 , • • •, 8} is of type II. In other words the 9 planes 
V 0 , V i , • • -, V8 of type II corresponding with the 9 lines L 0 , Lx , • • -, L8 
all contain R0.

Finally consider a plane V  of type III. Let N 0 , N x , • • -, N 9 be the 10 
lines of B in V  and let V 0 , Vx , • • •, V 9 be the 10 planes of type II corresponding 
with these lines. Suppose that 4 of these planes, say V 0 , Vx, V2 , V 3, have a 
point x  in common. If.#* is the point incident with N 0 and N ^, i e  {1 , 2 , 3 } ,  
then the line R  ̂ joining x  and x { is a tangent of P. But then there are 3 lines 
Rx , R2 , R3 in V 0 which are incident with x  and which have no point in com­
mon withM ^0, a contradiction. So V 0 , Vx , • • •, V9 is a 10-arc [10] of the dual 
space of PG (3 , 8). L. R. A. Casse however proved that for q even there is 
no (jq +  2)-arc in PG (3 , q) [6]. We conclude that the case u =  s — 8 , t  =  2 ,  
a =  16 cannot occur.
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Remark. The geometric argument which shows that â semi partial geo­
metry with parameters u =  s =  8 , t  =  2 and a =  16 cannot be embedded in 
PG (3 ,8 ) ,  holds for every semi partial geometry with parameters u =  s =  2Ä, 
t  =  2 and cl — 2 s.
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