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Analisi m atem atica. —  A  unilateral problem for a non linear 
vibrating string equation. Nota<*> del Corrisp. L uigi  A merio <**>.

RIASSUNTO. — Si studia il moto di una corda vibrante, sotto l’azione di una forza esterna 
funzione dell’ascissa, del tempo e dello spostamento, nell’ipotesi che la corda sia vincolata 
a vibrare tra due ostacoli puntiformi, Gx =  (X (t) , a (/)) e G2 =  (X (/) , ß (/)), mobili, nel piano 
(x ,y), con legge largamente arbitraria. La soluzione viene ricondotta a quella di un problema 
elementare, che si risolve col metodo delle approssimazioni successive.

i. Introduction

Consider the following, non-linear, vibrating string equation, in the cha­
racteristic form  (and in the sense of distributions):

C1-1) yz-n = / ( £  . *) ,y) = / ( P  , y ) ,

where E, =  (x +  t) 2~J , yj =  (— * +  t) 2~h. In (1.1) z f ( Y , y )  denotes the 
external force, y  =  y  (P) is the displacement from the x  axis, t  >  o is the time. 
We assume that the string, at rest, is placed on the # axis.

The aim of the present paper is to generalise to (1.1) the results recently 
obtained [1] when the external force does not depend on the displacement. 
We consider, as in [1], the following unilateral problem. Assume that the free 
vibration of the string, in the {x , y)  plane, is impeded, from below and from 
above, by a pair of point-shaped obstacles, Gx =  (X (t) , a (t)) and G2 =  (X ( f ) , 
ß (X))> arbitrarily moving and through which the string is obliged to pass. 
We assume that a (t) , ß (t) e C° (o'" +  00) and that X (t) satisfies only the 
Lipschitz condition | X' (t) | <  1 a.e., never being X' (0 =  ±  1 on an interval: 
therefore the longitudinal velocity of the obstacles cannot be greater than 
the velocity of a wave traveling in the string, and the equality does not hold 
on an interval. We can also treat the simpler case of one point-shaped obstacle 
(that is a (t) =  — 00, or ß (f) =  +  00) [2].

The problem considered has the following analytical interpretation. We 
consider, in the ( x , t) plane, a line A , .r =  X (f), and we impose that the 
displacement y  ( x , t) satisfies the following pair of unilateral conditions-.

C1 *2) « (f) <  y  (X (t) , t) <  ß (t) ( t >  O).

(*) Presentata nella seduta del 14 gennaio 1978.
(**) Istituto matematico del Politecnico di Milano.
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Let us observe that, as it is classical in Mechanics, such a problem can 
be reduced to a free problem by introducing the reaction of the obstacle, which
is an unknown distribution J. The displacement y  (x , t) will therefore satisfy,

°

on the interior Z of its domain Z of existence (see fig. 3), the equation

(i-3) ^ = / ( P , j )  +  J .

Assume now that the displacement y  (P) e C° (Z) and that, correspond­
ingly, /  (P , y  (P)) e Ljoc (Z) (this occurs, for instance, if conditions d), at 
§4, hold). Denote moreover by z  (P) the solution, g C° (Z), of the linear 
equation

(14) ^ = / ( p . j ( p ) )

which has the same initial and boundary values as y  (P). Then, by (1.3) 
and (1.4),

( I ' 5) J =  i p ^ ( p ) - * ( P ) )  =  r ^  ( r ( P ) = y ( P ) - * ( P ) ) ,

that is the reaction of the obstacle coincides with the m ixed second derivative of 
a function  r ( P ) e C ° ( Z ) ,  with null initial and boundary values. By (1.3), 
(1.4) and (1.5), the unknown functions, z (P) and T (P), satisfy the equation

0 -6) * & , = / (  P ,* ( P )  +  T(P)).

Moreover, the nature of the problem imposes that'.

(1.7) supp J =  supp ç  A .

Therefore the function T (P) satisfies the homogeneous vibrating string equation

(1.8) =  0 on the whole of Z — A .

Other conditions (all of clear physical meaning) have to be added to (1.6) 
and (1.7) in order to prove the existence and the uniqueness of the functions 
z (P) and  T (P) (cfr. § 4).

It is essential, to this aim, to solve an elementary problem, which we shall
call TC/aß problem and which generalizes 7uaß problem solved in [1 ].

2. P ro p e rtie s  of th e  so lu tio n  of 7raß problem 

Let us recall, firstly, the definition of 7raß problem.
Let us consider, in the ( f , f )  plane, the rectangle R =  oLNH =  

=  { o < £ < / , o < y } <  h}, and let A be a line of equation

(2-0  *i = g ( l )  (o < £ < / ) ,

where g  (£) is a continuous, strictly increasing function, g  (o) =  o , g  (/) =  h.
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Let moreover a (P) , ß (P) be two continuous functions defined on A 
and such that

(2.2) a ( P ) < ß ( P )  , a ( o ) < o < ß ( o ) .

Then TüœP problem consists in Unding a function  P (P) , P e R, which 
satisfies the following conditions (where a — o L U O H )  :

1) r (P )e  C° (R),

2) T (P) |a =  o (homogeneous Darboux forw ard condition),

3) a ( P )  <  r(P) <  ß(P) VP G A,

4) supp TZn s  {Pe A : T (P) =  a (P) or T (P) =  ß (P)>,
O

5) >  o on every arc A ' ç À  where F (P) <  ß (P) , <  o on
o

every arc A" Ç A where T (P) >  a (P).

It is obvious, by 4), that satisfies (1.8) on the open set 

R — supp 3  R — A .

It has been proved, in [1], that 7Taß problem admits one and only one 
solution, T (P) — r aß (P). Denoting moreover by Daß (P) =  r aß(P) |A the 
trace of r aß (P) on A.y we have (by 2.19 of [ 1 ])

(2.3) raß (P) =  Oaß (PA) V P e R

where PA isy on A, the maximum point P (fig- 0 *
Let us now prove the following properties of r aß (P).

I) Let T (P) =  Taß (P) be the solution of problem and let (oc^P) , ß^P)) 
be a pair of functions such that

(2.4) a (P) <  od (P) <  T (P) <  ß, (P) <  ß (P) V Pe A .
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Then T (P) coincides with the solution I \  (P) of 7iai ßl problem'.

(2.5) r (P) =  ra0 (P) =  rai01 (P) =  r1 (p) (=* ra0 (p) =  rrfl ( p » .

It is obvious that T (P) satisfies the two first conditions characterizing 
the solution I \  (P):

lO r (P )e  c° ( R ) , 20 r (P) |0 = o .

It follows moreover from (2.4):

3i) a, (P) <  T (P) <  ß, (P) VP e A .

Assume now that P„ G supp IA,,. Then we have T (P0) =  a (P0), or 
T (P0) =  ß (P0): assume T (P0) =  a (P0).

It follows T (P0) =  a, (P0), as a (P0) <  a, (P0) <  T (P0).
This implies the inclusion:

{Pe A : T (P) =  a (P) or T (P) =  ß (P)} £

S  {Pe A : T (P) =  a, (P) or P (P ) =  ß, (P)} .

Therefore F (P) satisfies the condition:

40 supp r E, g { P e A : r  (P) =  a, (P) or T (P) =  ß, (P)}.
! O

Assume lastly that it is V (P) <  ß3 (P) on an are Ajc; A; it follows 
T (P) <  ß (P) on Ai. Hence we have by 5):

I °5i) >  o on every arc AiC A where T (P) <  ßx (P) ,

Tin ^  0 on every  arc A ^ c  'A where T (P) >  ax(P) and the thesis
is proved.

II) (Thebrem of monotonie dependence). Let T  (P) and  (P) be the 
solutions of 7raß and problems. Then, i f  it is

(2.6) ß. (P) >  ß (P) V Pe A ,

we have also

(2.7) r 1 ( P ) > r ( P )  v P e A .

I f  r \  (P) denotes the solution of 7iaiß problem, then

(2.8) «1 (P) < a (P) => r, (P) < r ( P ) .

Assume that (2.6) holds and that there exists C e  A such that 
Fj (C) <  F(C). As r 3 (o) =  r  (o) =  o, there exists an arc A C Ç A such 
that P3 (P) <  T (P) for A <  P <  C, and (A) =  T (A). We have therefore
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Tt (P) <  ß (P) <  ßx (P). This implies, by conditions 2) and 5), that the func­
tion Tx (P) is increasing on A C (cfr. (2.4) and (2.7) of [1]): therefore

(2.9) r x (P) >  r x (Q) v a  <  Q <  p <  c .

Moreover, since F (P) >  F1 (P) >  a (P) , F (P) is a decreasing function 
on A^C:

(2.10) T ( P ) < r ( Q )  VA <  Q <  P <  C .

Hence, by (2.9) and (2.10):

r  (C) <  r  (A) =  i \  (A) <  i \  (C ),

which is absurd.
Let us observe that, by I and II, the function  r ,  (P), solution of pro­

blem,, gives also the solution of 7trßx problem: in fact

a (P) <  r  (P) <  r ,  (P) <  ßx ( P ) .

We shall denote, in what follows, by  j| • || and by || • ||A the maximum 
norm ifor the spaces C° (R) and C° (A). It is then obvious, by (2.3), that the 
solution r«p (P) of 7tap and its trace on A , Qaß (P), have the same norm:

(2.11) Il r *  j| =  IIQ* IU =  II r aß||A .

n i )  Let T (P) and  r x (P) be the solutions of 7Tag and problems. Then,
i f  it is

(2.12) p (p) <  ßi (P)

it is also

(2.13) Il r x — r  y <  11 px

Assume the contrary, that is (by (2.11))

Il Pi — r 11 = Il i\ — r iu > y iu.(2.14)
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Let K be the closed set of the points P e  A such that T^ (P) — T (P) =  
=  II r 3 — r  II . Let C be the minimum point of K: we have Tj (C) — P (C) =
=  Il r i — r  II >  o , =» C >  o (since I \  (o) =  T (o) =  o). It is moreover

(2.is) o ^ r ^ p )  — r ( P ) < r 1 (C) — r ( c )  for o < p < c .

Let us denote by T and by Tß the closed sets A such that

r  (P) =  r x (P) on T , r  (P) =  ß (P) on t 3 .

Obviously, C <£ T (since T-, (C) >  T (C)); moreover, C ^ Tß (as C e  Tß =» o <
< r,(C ) -  r(C ) = r ,(C ) -  ß(C) < p,(C) — ß(C) < n  ̂— p iu < h r, — r ||).
We have therefore, necessarily,

r (C) <  p (C) and r ,  (C) >  r  (C ).

There exists then an arc A ~C £  A, wiht o <  A <  C, such that 

r ( P ) < p ( P )  and T 1 ( P ) > r ( P )  V P e A ^ C .

Therefore T (P) is an increasing function, on A^'C; conversely the function 
r i(P )  is decreasing (as, by (2.5), r ,  (P) =  rr01). It follows, V P eA ~ C ,

r . ( P ) - r ( P ) > r 1 ( C ) - r ( C ) ,

contrary to (2.15). Hence (2.14) is absurd.

One proves, in the same way, with reference to the solutions T, (P) and  
P (P) of 7Taig and  7rag problems, that

(2.16) a i(P ) < « ( P )  ^ I I A - r i l  < | | a i - a | | A .

We prove now the conclusive statement.

IV) (Theorem of Lipschitz-continuous dependence). Let T (P) and  Pj (P) 
be the solutions of 7ra0 and  7caißl problems, with arbitrary pairs (x , ß) and  (a, , ß,).

We have then

(2-w) l i r J - r | | < 2 { | | « I - a | u  +  || ß . - ß i u j .

Setting, on the whole of A,

(2.18) 5 (P) =  min {a (P) , a, (P)} , ß (P) =  max {ß (P) , ß, (P)}.

we can consider, toghether with 7ta0 and 7tai01, the problems 7ra0 , 7ra0 , 7Ta,01 
and the corresponding solutions. It follows from (2.18)

5 (P) <  « (P) , (P) ; ß ( P ) > ß ( P ) , ß x ( P ) .
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Hence, by (2.12), (2.13), (2.16) and by (2.18),

II r ~ r x|| = 11 raß —raiPl u <
< II raß — raß il + y raß — r &$ y + n röß — räßl || + 1| rsßl — raißl n <
<  II ß — ß Ha +  Il a — a ||a  +  II ß — ßi Ha +  II “ — ai IU <

<  2 {H a — aj ||a  +  || ß — ßi IU} ,

which proves (2.17).
Let us observe that (2.17) holds even with reference to other equivalent 

norms\ in particular fo r  the norms

Il r II' = max I & (P) r (P) I , II r lU ■= max | » (P) T (P) | ,
R A

where & (P) , P e R, is a strictly positive, continuous and decreasing function.
Let, in fact, Rp — {Q : o <  Q <  P} be the rectangle c  R with maximum 

vertex P and let Ap be the part of A with ends o and Pa : we have, by (2.3) 
and (2.17),

Il Tj -  T ||Rp <  2 {|| «, -  a ||Ap +  II ßx -  ß IU,} •

Hence, VP G R,

& (P) I I \  (P) — r (P) I <  2 {«• (P) I! aj — a ||Ap +  «• (P) II ß, — ß lÎAp} <

< 2 { | | a i - a ||;p + | | ß 1- ß | | U < 2 { l l al - a l l A + l l ß l - ß l l l } .

(2.19) l l ^ - r i r  < 2 { | | a 1 — a | | l + | | ß 1- ß | i ; } .

Observation. -  We can generalise) as in [1], 7uaß problem, by substituting 
homogeneous forw ard condition 2) by an arbitrary forw ard condition'.

2') r (P) lô =  Cd ( P ) ,

where Co (P) € Ç0 (c) and satisfies only the (necessary) inequalities'.

(2.20) a (o) <  Co (o) <  ß (o) .

Setting P =  {C , 7)} , P ' =  {1 ,0} , P" =  {o , 7]} , the function

(2.21) C(P) =  ^ ( P ' ) + ^ ( P " ) - ^ o ( o )

gives the solution of Darboux problem, for the homogeneous equation Cçn =  °> 
with the forw ard condition'.

(2.22) C(P) |o =  Co(P)-

Then the generalised rcaß problem) with conditions 1), 2'), 3), 4), 5), has 
one and only one solution'.

(2.23) raß (P) =  c (P) +  r ( P ) .
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In  (2.23) T (P) coincides with the solution r a_çfp_ç- of the Tca_ ç3_çproblem 
with homogeneous forw ard condition (we calculate therefore T (P) by imposing 
1) , 2) , * * - , 5), where a (P) and ß (P) are substituted by a (P) — Ç (P) and 
by ß (P) -  Ç (P)).

F ix  now the function  Ç0(P) and consider two arbitrary pairs (oq , ßj) , (a2 , ß2)>
with

«1(0), 0,(0) <-^0 Co) <  ßi Co) , p. (O) .

I t  follow  then from (2.19) and (2.23), fo r  the corresponding solutions 
(P) and  r<x2ß2 (P) (with Paißx |o “  Pa2ß2 1° ”  ^o):

. . II Paxßx — r a2p2 ir =  Il Pocx-^^x-c — ir ^
(2.24)

<  2 {Il ax — a2 ||A +  Il ßi — ß2 Ha} •

3* 7U/aß PROBLEM

Let /  (£ , v ] y) =  f  (P , y) be a fonction defined in the cylinder 
{Pe R ,  — 00 <  y  <  -f °°}- Assume that

(3-0  / (P , o) 6 L1 (R)

and that f  (P , y) is a L ip s chitz- continuous function of y , that is

(3.2) 1/ (P , yì> - f  (P , yO I <  K \y%- y x | ,

where the constant K does not depend on P j x , ^ -
Taken an arbitrary function Ç0 (P) g C° (a), let Ç (P) =  Ç0 (PO +  £o (P'O — 

— Ç0 (o) be the solution of Darboux problem for the homogeneous equation 
^  =  o, with the forward condition Ç (P) |0 =  Ç0 (P).

Let us consider now, on R, the integral nonlinear equation (of Volterra 
type):

(3.3) y ( P )  =  K(P) + j f ( Q  . s m J Q  (Rp =  (o <  Q <  P } ) .
RP

As it is known, it follows from (3.1) and (3.2) that (3.3) admits one 
and only one solution y  (P )e  C° (R). Moreover, y  (P) coincides with the solu­
tion (in the sense of distributions e D '(R ))  of Darboux problem fo r  the equation

(34 ) y ^  =  f { P , y ) ,

satisfying the forw ard condition

(3-5) y  (?) |o =  Ç0 (P) .
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We define now %aß problem . Let us arbitrarily assign the functions

zo (P) » r o (P )e  C° (cr)

« (P) > ß (P) e C° (A) ,

a  (o) <  z0 (o) +  r 0 (o) <  ß (o) .

Then problem consists in  determining a pair of functions, z  (P) and 
T (P), such that:

I ) . * (P) » r (P) e  c° (R), 

i i)  g (P) |a =  *0 (P) , r (P) |0 =  r0 ( P ) ,

III) a (P) <  z  (P) +  T (P) <  ß (P) VPe  A ,

IV) ^ = = / ( P , j r ( P )  +  r ( P ) )  on R ,

V) supp I \ ,  s  {PeA : T (P) + * (P )  =  a (P) w  T(P) +  ^ (P) =  ß (P)}, 

VI) r 5,  >  o on every arc A' £  A where T (P) +  z  (P) <  ß (P) ,
o

r ç„ <  o on every arc A 'ç  A where T (P) +  z  (P) >  a (P) .

o
Let us observe that, by V), V (P) satisfies, on R — A, the equation I&, =  o, 

Setting then

(3.8) ^(P) =  *(P) +  r ( P ) ,

o
it follows from IV) that y  (P) satisfies, on R — A, the equation y ^  = f  (P , y )  
(efr. §1).

We prove now that problem admits one and only one solution. As 
we shall see, this can be proved by using classical Banach contraction theorem 
(hence, we can calculate the solution by successive approximations method).

Let us take, firstly, an arbitrary function r ( P ) e C ° ( R )  satisfying the 
condition

r (P) I« =  r0 ( P ) .

Setting afterwards Ç (P) =  z0 (P') -j- z0 (P") — z0 (o), we solve the integral 
equation

(3.9) ^ (P ) =  Z (P) +  J f  (Q , z  (Q) +  r (Q)) dQ ( P e R )
RP

(which is possible, by (3.1) and (3.2)).. Observe that the solution z (P) is, V 
fixed P, a functional of the restriction of T to the rectangle Rp; moreover

(3.10)

(3-6) 

with 

(3-7 )

*(P) |o =  *o(P).
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Let lastly A(P) be the solution of the generalised Tza-z3 -z  problem, with 
the condition

(3.10  A (P ) |o =  r 0 (P ).

We have defined, in such a way, a functional transformation

(3.12) A =  F (T) ,

on the closed and convex set % consituted by all functions <j> (P) e C° (R), 
such that

<KP).|o =  r0 ( P ) .

Let us prove now that the transformation F is a contraction, in assu­
ming C° (R) endowed with the norm

(3.13) il O I!' =  m ax I , - p(5+11U  (5 , V]) I ,
R

where

(3.14) p — const. >  y 5 K (<==» 4 K/(p2 —• K) <  1) .

Taken Tj and I \ e  we have, by (3.2) and (3.9), for the corresponding 
solutions z-, and :

| *  (P) -  (P) | <  K J  {| (Q) -  (Q) | + 1 r x (Q) -  r 2 (Q) I} dQ .
Rp

Setting Q =  (a , v), it follows from (3.13), VP =  (£ , Yj)e R,

e ~ ^ \ z ,  (P) — ^  (P) I <  K J  {e^ + i > \ Zl (Q) (Q) | +
Rp

+  , -p( ,+v) 1r i ( Q) _ _ r 2 ( Q ) | } d [Ad v <

< - p - { l l * i - * . l l '  H - i m - r j i ' } ,

=*1! *1 -** II' < 4- {II *1 -*2 ir + II r, -  r2 II'}.
p

Since, by (3.14), K <  p2, we obtain the inequality:

(3.15) IU1- ^ i r < - ^ i r lir1- r 2||',

where, by (3.14), K/(p2 — K) < 1 .
Let us calculate now the norm of Ax — Aa. Setting

— , ßx =  ß —
«2 =  a — ** , ßa =  ß — zì >

2. — RENDICONTI 1978, voi. LXIV, fase. 1.



i 8 Lincei -  Rend. $c. fis. mat. e nat. -  Vol. LXIV -  gennaio 1978

we have, by (2.24) and by (3.15)»

(3 •1Ö) Il A3   A2 II' <  4 II Z \  2̂ II ^  TT- Il " 2̂ II
p  XV.

and the thesis follows from (3.14).

There exists therefore (by Banach theorem) one and only one function  
T (P )e  °ll such that V — F (r) . The corresponding pair (z (P) , T (P)) gives 
then the unique solution of 7C/aß problem.

4. Solution of the mechanical problem

We apply now the preceding results in order to solve the problem described 
at § I . Let us consider equation (1.1) in a domain Z of the (x , i) plane, defined 
by the inequalities:

(4.1) t > 0  , p ( t ) < x  < q ( t ) ,

where p (f) and q (f) satisfy Lipschitz conditions, and p  (t) <  q (f) , V/. We 
assume moreover | p'  (t) | <  1 , | q' (f) | <  1 a.e., never being p r (t) =  ±  1, 
or q' (i) =  ±  I, on an interval: therefore we exclude that the boundary 
lines, Gp =  {% =p( t ) }  and <7q =  {x =  q(t)}, contain any characteristic segment.

Suppose that there are assigned the Cauchy initia l conditions'. 

(4.2) y  (:x , o) =■ 9 (x) , y t (x  , o) =  ^ (x) , (p (6) < x < q  (o)) ,
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and the boundary conditions'.

(4-3) y  (J> 09 , t) =  A (t) , y  (q (t) , t) =  B (t)

Consider now a line A c  Z , x  — X (t)} where X (f) satisfies the same type
of conditions as p  (f) and q (t) and it is

(4.4) p  (t) <  X (*) < q  (f) it >  o) .

The data are supposed to satisfy the following hypotheses: 

a) <p' (x) , 4 (x) e  L1 {p  (o)H  q (o)) ,

A (^  , B (if) e C° (o1- +  00), A (o) =  <p ( /  (o)) , B (o) =  <p (q (o )) , 

*) a ( P ) , ß ( P ) e C ° ( A ) ,  a (PQ) <  ç (X (o)) <  ß (P0) ,

d) /  (P , o) e L1 (ZT) VT >  o ,

i /  (P . A>.) — f  (P - yì) I <  Kt  I y 2 —  y 1 I , y<L and VP 6 ZT .

In ZT =  {o <  t <  T , /  (/) <  x  <  q (/)}; KT is a constant depending
only on T. Observe moreover that\ by d)\

: ^ ( P ^ C P ^ C ® ^ ^

4‘S y  (P )G C° (Zr) =»/(P , (P)) =  / ( P  , o) +  ( / ( P  , y  (P)) -
—/  (P > o)) 6 L1 (ZT) .

Let now W  be the set o f all functions w  (P) such that'. 

iO «/(P)6C°(Z),

h) (P) > o/* (P) > «'çtj (P>€ L1 (Tx U TO .

In such hypotheses the free problem for (r. i), with the initial and boundary 
conditions (4.2) and (4.3), has one, and only one, solution y  (x , t ) e  W. We 
m ay obtain y  (x f) by a classical scheme: we solve, firstly, a Cauchy problem 
in T x and in T a; we solve, afterwards, Darboux and Goursat problems in 
Sx , S2 , Rx , S3 , S4 , R2 , • • • . The solutions of these problems coincide with 
those of nonlinear integral equations (of Volterra type) for which existence 
and uniqueness are guaranteed by hypotheses d).

Let us consider now the problem with obstacles. Bearing in mind the descrip­
tion given at § I, the initial and boundary conditions, and setting

(4.6) j ,(P )  =  *(P ) +  r ( P ) ,

we are brought to solve the following analytical problem', fin d  z (P) and T (P) 
such that

fi) z (  P) and r ( P ) e W ,
Ä) Z (x , o) =  <p (x) , zt (x , o) =  4» (x) (J>(p) < x  < q  (o))
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z (J> (t) . Ô = A (t) . * (.1 (0 » 0  = B (t) if >  0),
r  ( x , 0) == 0 » r  t (x., 0) = 0 0  (0) <  * < s ( ° ) ) .
r  (p (t) , t )  = 0 , r  (3 00,0 =  0 if >  0),

j'i) a (P) < ^ (P) + r (P)<P(P) V P e A ,

À ) * i n = f (  P ,*(P ) 4 - r  (P))
0

on Z ,
Jò) supp = {p g a : r(P)+^ (P) = a(P) or■ r (P )  + jr(P) = m y ,

À) > 0  on every arc A! c= O
A such that * (P) + r  (P) < p(p).

< 0  on every arc A"cz
0

A such that 5 (P) + r  (P) > a ( P ) .

It is obvious that, if T (P) and z  (P) satisfy j\)  , • • - , / 6), then y  (P) == 
=  z  (P) +  T (P) gives a solution of our problem.

Let us prove now that the pair (z (P) , V (P)) exists and is unique.
We have in fact, by the third and by the fourth of j 2) (and solving the 

corresponding Cauchy and Goursat problems on Tx , T 2 and on S i , S2) , 
T (P) =  o o n T 1U T 2U S 1U S 2. We calculate now z  (P), on the same domain, 
by solving the same problems for the equation z ^  = /  (P , z), where the 
initial and boundary values are given by the first and by the second of y2). 
Therefore, as it is obvious, the solution y  (P) and that of the free problem 
coincide on Tx U T2 U Sj U S2.

Observe now that T(P)  and z  (P) are known on the lower edges P 0 N x 
and P 0 H x of Rx. Hence we obtain V (P) and z  (P) on the whole of Rx by solving 
a tof0$ problem. We obtain then V (P) on S3 by solving a Goursat problem 
for the equation — o; we can calculate afterwards z  (P), on S3, by solving 
the same problem for the equation z ^  = / ( P  , z  (P) +  T (P)). In the same 
way we obtain T (P) and z  (P) on S4, by solving Darboux and Goursat 
problems. We shall calculate then T (P) and z  (P) in the rectangle R2 by sol­
ving a KfZu problem and so on.

Our problem has been therefore solved. More generally, we can deter­
mine the motion of the string in presence of more obstacles of the type consi­
dered before. One assumes now that the domain Z contains m lines A  j , x  =  
=  X; (t) , where p  (i) <  Xx (/) <  • • • <  \ m (t) <  q (t); the displacement y  (P) 
must satisfy, correspondingly, m conditions of the type

a , ( P ) < y ( P ) < ß ,  (P) (P e A,).

I t  may be, for some j  , oq- =  00, or ß9• =  +  00 : in this, more simple, case
we have a point-shaped obstacle.

For these problems, existence and uniqueness theorem holds.
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