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Magnetofluidodinamica. — Unsteady Magnetoaerodynamic Forces 
on an Oscillating Circular Cylindrical Shell of Finite Length. Part III: 
Dynamic Response Problem. Nota di L iviu  L ibrescu <* (**)>, presentataci 
dal Socio C. F erra r i.

R iassunto. — Quest’ultima Nota, essendo la continuazione delle prime due [i, 2], 
contiene la deduzione delle equazioni che governano il problema della risposta dinamica 
e descrive un metodo analitico per risolverle.

i. In [2] it has been derived the expression of transient M —A forces 
acting on a finite elastic circular cylindrical shell flown by a supersonic, 
electrically-conducting gas, a magnetic field (with H || U) being also present.

In order to determine the structural response of these panels subjected 
to an external pressure field, we start with the basic linearized equilibrium 
equations of the system

(1) (Sr —  s / - S ) ( w )  =  F*(xl t x a , f ) ,

where FE denotes the disturbing pressure field with prescribed spatial and 
temporal dependence, w h iled , J  and sé  denote respectively the structural, 
the inertial and the M —A operators, the last one being defined by Rei. 
(II .I2 2) (1).

Adopting as valid the linear shallow theory of isotropic circular cylin­
drical shells, we have the following pertinent equation (see e.g. [3]).

(2) ( ^ - / )  (in) =  D A %  -  -  +  m 0 ,

(A =  d*Fx\ +  &px\) ,
where D and K denote the bending and stretching rigidities of the panel; 
m0—the reduced mass; C (x1 , x %, t)—the potential function governed by

(3) KAaC =  — R-> tfw F x l .

(*) The Author wishes to express his sincere appreciations to Prof. Carlo Ferrari 
for his most valuable criticism, suggestions and encouragement during the elaboration of 
the three parts of the work.

(**) Nella seduta del io  dicembre 1977.
(1) Prefix II is added to the relations and references afferent to Part II of the 

work (marked in the bibliography as [2]).
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Considering simply-supported edge conditions and using Reis. (II. 1) and 
(II. 14), from (3), a particular solution is yielded as:

(4)

where

/2 N « y  (f)
C , x2 , i) =  -  2j  — a ~ ■- sin qizxx cos nO ,

As;v =  K (?2 +  v2)2 v =  «//(tcR) .

Galerkin’s method will now be used. For this purpose Reis. (II. 1), (II. 12), 
(II. 14), (2) and (4) are inserted into Eq. (1) which is multiplied by sin n ix 2 X 
Xcos nd and is further integrated over the panel mid-surface. Expressing FE 
as Fe =  F (xt , x2) Fi (I), the following dimensionless set of N simultaneous 
integrodiiferential equations, derived under zero initial conditions, is yielded as:

1
n / (0) r  c

( 5 )  S  J ß :  (i) +  v„ (t) +  ß 2 J  <3  ̂(t —  t )  vq ( r )  d T  +
9 0

l l
r (2) r (1)

+  G J  & rq (T) dT +  2 M2 J  & rq ( t  —  t )  V q (r )  d r  +
0 0

+  M’ J  Sri(t — T) 5 , ( t )  dx] j =  Cr F, (f) , (f >  o)
0

(r =  i , 2 , • • •, N) , ( v q (t) =  dz/j/dx)
where

1

^  ( i  — r ) = . [  W™ (SO I Wr (S,) K .(*, ; i - ? ) d ì „
J |̂ 1=00

(m)

&  T9 ( }  —

J

- /
K

o

i

[ J  Wr (*0 (xx — U) dä,J
U

du ,

are assumed locally intégrable functions that are zero for i  — r  <  o. Here 
the variable u is defined as u — xl —  £x, while for the first moment of 
motion we have considered the instant t0 — o.

In addition we have
(4) (2) (0) 4 „ 4  T> 2 ^ 4  (0)

=  Y *  —  2 V2 7C2 +  V4 * 4 +
v4 R2 tu

A rq  js4 DAs;v rq '
( m )  r

T f? =  J  Wr (*0 fo ) dx, ; ß, =  U 2 /2 D-> ;

ß2 =  *?, 4  Po /3 D -1 ;

Cr =  /3 (tlD)-1 J J F (x2 , x2) W r (x2) cos nd dx2 d6 , 
0 0
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while

(&) =  dm W Jd x ?  ; W f  (ft) =  W , (ft) =  sin ^  .

As for the circumferential wave number n , a particular value of it is to be 
selected for investigation.

The above derived set of integrodifferential equations governs the 
response problem of finite cylindrical panels placed in an electrically conduct­
ing gas flow and excited by an external pressure field; they depend not only 
upon the instantaneous characteristics of the system but also upon those 
of its past history.

A similar set of governing equations has been obtained by analysing 
the structural response problem of aerospace vehicles when considering the 
non-stationarity of the gas flow [4 , 5].

2. In what follows an analytical framework for solving such equations 
of the convolution type will be presented. For this purpose the distributional 
point of view will be used.

In this connexion it is worth mentioning (see e.g. [II .3, I I .4] that the 
space of distributions @'+ (t) whose supports are contained in o <  i  <  00 
constitute a commutative convolution algebra having the ^-distribution as 
unit element.

Let us proceed now to the extension by zero for i  <  o of Fj (t) , vq (t) , 
&rq (£);, • • • and to the utilization of some relations concerning the convolu­
tion process, i.e.

(6) T 8 ( i ) * f ( i )  =  T f  ; T /  (t) * g  (i) = f  * T g

where * is the convolution symbol; T —an arbitrary differential operator 
having constant coefficients; /  and g—distributions. Reis. (6) allow us to 
express Eqs. (5) as a set of N simultaneous convolution equations

(7) (r= I , 2 , . . . ,N )
Q=1

where
(0) (2)

(8) ^  (0 = k  'Frq 8(2) (i) +  <Dr, 8 (t) +  Y (0 ß; [Cl Vrq (0 +  *  (0 +
(1) (0) (0) (0)

+  2 M2 (0 +  M2 (0] , (8<m) CO s  dm 8/dT  ; 0 %  (t) =  d2̂ rJdF)

and
=  Y( t ) Cr F, ( t ) y ( r , q =  I

are given distributions in (§+)nxN and (^ '+)Nxi, respectively; vq (f) are 
the solutions also required to be in (^+)nxi> while (^+)nxn denotes the 
space of N X N matrices whose elements are in 2$'+ (f).
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Now, we invoke a theorem in the field theory of convolution equations 
(see [II .3; II-4]), expressing the condition (necessary and suficient) for (7) 
to possess a unique solution in (^+)nxi- By virtue of this theorem the 
problem of finding a solution to (7) reverts to the problem of finding an 
inverse to the m atrix ^  =  ( ^ )  which in turn requires the existence of an 
inverse for det . If this is the case, there is precisely an unique solution 
in ( ^ +)nxi for vq as expressed by

N
(9) Vq (f) =  2  &rq * . (? =  I , 2 , • • •, N)

r = 1

where ,<è == (&rq) is the inverse of fé7 in the convolution algebra (^+)nxn>
(  N

or j ï j  & rq * ^ q 8  =  %(rs) In indicial
4=1

notations!, where §(rS) ( = 8 NxN) denotes the N x N  unit m atrix in &+ whose 

elements are:

8(rs) =  8 for r  =  s , 8(rs) =  o for r ^ s f (r , s =  i , 2,• • N).

3. In order to facilitate the determination of we shall express most
Co)

accurately the functions @rq , • • *, ^ f q occurring in (8^ through exponential 
polynomials, as under

L;M
(10) Y (t) <3.rq (£) =  Y (i) ^  g(rV)im t1' 1 ey^ ml ; • • •, a.s.o. ( r , q =  I , 2 , • • •, N)

m=1

where Ç(rq)im » J(rq)me C (the class of complex constants) are distinct ones 
for each function to be approximated, while L and M are positive integers, 
their choice depending on the required accuracy of the approximation.

As it is wejl known (see [11.3]), the r.h.s. of (10) m ay be expressed as

L,M L,M
(I I) Y (t) 2  g(rq)lm i1- 1 = 2 Smim (J -  I) ! (S(1) -  TM«

1=1 1=1
m—1 m—1

By considering in (10) L =  1, which leads to 2 (3)

M
(12) Y (f) 9 rq (t) =  Y (t) 2  gmrn eyM *1

m=1

(2) Thus (&rq) plays the role of the matrix response of the system to an unit impulse.
(3) These functions, occurring in the governing equations of some analysed response 

problems [4, 5], are approximated ab initio as under (12) by considering in addition M — 2. 
For a general study of the approximation of functions through exponential polynomials 
and quasi-polynomials (as defined by Reis. (10) and (12), respectively) see [7], where an 
ample bibliography of the matter can be found.



86 Lincei -  Rend. Se. fis. mat. e nat. -  Vol. LXIV -  gennaio 1978

one thus gets a considerable simplification of (11) consisting in
M M

(13) Y ( i )  £  g (m)m e ^ ml =  2  s,nym (S(1) -  ï(ra)m S)"1 .
m—1 m—l

(0)

Expressing in (8)x the distributions Y (i) <&rq (t) , • • •, Y (f) (t) under
the form given by the right-hand side of Rei. (11) and making use of 
Heaviside’s symbolic method (consisting at this stage—see [6] and [II.3]—in 
the formal replacement of 8{w) by p n and of X8 by X, where X denotes an 
arbitrary scalar), we are allowed to express *€rq (p) as:

m + 2

(rq)an Pn
(H )   , ( r , g =

(rq'Pn PUn=0

where the positive integer m  and the complex constants (rq)an and (rq)bn 
depend upon the choice of r  and q.

Having thus reduced the problem to a linear algebra one, we can obtain 
the matrix inverse of fé7 =  (%>rq (p)) i.e. ^  — (férq (p)) their elements being related

N

through % V rq{p )V qs(p) =  1 (rs), where l (rs) denotes the unit m atrix whose 
ff-1

elements are:

l(rs) =  I for r =  s ; l (w) =  o for

If d e t t ë (p ) ^ £ o ,  then & (p) has an inverse given by fé (p) =  
=  A(p)\(det  &(p))j where the adjoint A (p) of &(p) is the m atrix transpose 
of the m atrix of the cofactors of %>.

Having obtained férq (p) under the form ^rq (P') (rq)Qn (P)l(rq)^m (.P) 
where P and Q are polynomials given by

n m
(r#)Qn (JÒ == S  (rq^s PS > (rqPm (P) ~  irq)$8 P* >s=0 <9=0

where as and ßse C , m  and n being positive integers and supposing n >  m, 
one easily obtains

O s ) ■ 0>) =  £ < * & /
v = 0

2  (r?)P</t=0 ______
m

2  (rqfitP1
t=0

where s <  m, and ps being complex constants.
By carrying out a partial fraction expansion, from Rei. (15) we get 

n—m g Ip, y 9
(16) (j>) =  2  +  2  z ,  / t T - v  ' 2  ^  =  *» ;

v = 0  JJL =  1 V =  1 V /7 T W t V  y .= l(r ,q=i , 2 N),
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Yjj, being the complex roots of multiplicity k^ of Pm (p) and the coefficients 
of the expansion.

Reverting now to the initial symbol 8, i.e. replacing p n by 8(n) and X 
by X8 and having in view Rei. (11), from (15) we finally get

n—m g y
(17) (f) =  2  <*& s(v> (t) +  2  2  7 - V  r - 1 e■'<*>»' y  ( f ) .

V =  0 !X=1 V =  1 i y  —  I j l

When m  >  n the first summation term  does not appear.
Further, by inserting (16) in (9) and by making use of Rei. (6) whenever 

possible, one obtains vq (£), wherefrom the transient deflection and stresses 
in the structure are determined by using Rei. (II. 1) in conjunction with 
(II. 14) and, respectively, the relations expressing the stresses in terms of 
w  and C (see e.g. [3]).

Concerning the results obtained in Sect. 3, it is worth mentioning that 
these ones can also be deduced by using some alternative methods as e.g. 
the operational method developed in the space of distributions (see [6]) 
or the Laplace transform of right-sided distributions.

It is also worth remarking that the method exhibited in this Note may 
be used not only when dealing with the structural response problem to deter­
ministic pressure excitations (as it has been done explicitely in this paper), 
but we m ay appropriately utilize Eq. (7)(4) to determine also the dynamic 
response when the system is subjected to a random pressure field.
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