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Teorie relativistiche. — The Ehlers-Rindler problem in cylin
drical symmetry. Nota I di M a u r o  C a r f o r a , p resen ta ta^  dal 
Socio C . C a t t a n e o .

RIASSUNTO. — Si studia il campo gravitazionale e il campo elettromagnetico generati 
da uno strato cilindrico carico circondato da un secondo strato cilindrico coassiale neutro ed 
uniformemente rotante rispetto ad esso. Si trovano le soluzioni generali delle equazioni 
di Einstein-Maxwell nelle tre regioni separate dai due strati cilindrici, e si impongono poi le 
condizioni di raccordo. Le conclusioni fisiche sembrano in accordo con il punto di vista 
machiano. L’esposizione del lavoro viene suddivisa in due Note successive.

In 1969 [io], W. Rindler conjectured that a charged spherical shell, 
inside a neutral rotating one, would be surrounded, according to M ach’s 
ideas, by a dipole-like magnetic field. This suggested to him and to J. Ehlers 
[5], [6] the statement of an interesting problem in general relativity, a problem 
that they solved to first order in the gravitational constant and to second 
order in the angular velocity of the shell, co; with results that, according to 
the Authors themselves, left some interpretative uncertainty.

The Ehlers-Rindler problem, (E-R problem henceforth), and the machian 
Thirring problem are similar to each other in many respects. It has been 
argued by E. Frehland [7] and L. Pietronero [9] that cylindrical symmetry, 
rather than the “ almost-spherical ” one adopted by Thirring himself and 
by m any others, is relevant for a clear description of the Thirring effect. 
This seems to suggest that also the E-R problem finds a more natural collo
cation in the hypothesis of spatial cylindrical symmetry. Hence keeping 
untouched Riridler’s original idea, we consider the following problem:

“ to find the solution of the Einstein-Maxwell equations describing 
a space-time manifold V4 and the electromagnetic fields generated by two 
coaxial and infinitely long cylindrical thin shells of matter. The inner shell 
is supposed to be at rest and charged, the outer shell, electrically neutral, 
is uniformly rotating round the common axis. Rest and motion being consi
dered with respect to the static frame of reference outside the shells ” .

I wish to express m y gratitude to Prof. Carlo Cattaneo for having sug
gested to me this problem and for his help in the course of this work.

Notation. Four-dimensional tensor indices are denoted by Latin letters i , k , I 
and take the values 1 , 2 , 3 , 4 .  Three-dimensional tensor indices are denoted by Greek let
ters a , ß , y , • * • . We use the metric with signature -j— 1— |------ .

(*) Nella seduta del 14 gennaio 1978.
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I. St a t e m e n t  of t h e  pro blem

Let us call S  and 2  the hypersurfaces describing the histories of the inner and outer 
shell respectively. They divide V4 in three regular regions: A4, within the charged shell; 
A2, between the shells; A3, outside both. According to our hypotheses each region Aa is sta
tionary and provided with spatial cylindrical symmetry: that is, it admits a group of isometries 
G3, generated by three commuting Killing vectors | (2) , § (3) , § (4) -̂ <2) , § (3), being space-like, 
§ (4), time-like, and their trajectories being homeomorphic to S1, R1, R1, respectively. Such 
hypotheses imply the existence, in each Aa, of physically admissible local coordinates (x*), 
in which gilCi2 ~  8ïk,3 — g%k£ ~  °> that we call stationary cylindrical coordinates of Aa . We 
have a continuous infinity of such coordinates, and one passes from a system to another by 
means of a transformation of the kind: x1 =  f 1 (x1') , xu =  A“, xu' +  f u (x1'), ( « = 2 , 3 , 4 ) ,  
where, up to the invertibility conditions, A“,, are arbitrary constants, and / ] (x1') , f u(xir) are 
arbitrary functions. Without any physical limitation, we can put x1 =  xl>, f u (xv ) =  o, so 
we shall consider only stationary cylindrical coordinates systems defined up to:

/  \ 1 1 ' u  A U U r(1) X  =  X  , X  =  Ay,' X  .
Let us denote, in the regions A 1 } A 21 A 3f such coordinates systems by

(**') =  (A  <p'> ct’) , ( x t) =  (r, <p ,2 ,  ci) , {g )  =  (r, Ç , z  , ci) ,

respectively, and let us call £(M), (u =  2 , 3 , 4 ) ,  the Killing vectors in the 
inner region A 1, §{u) those in the intermediate region A2 , those in the outer 
region A 3. The congruences of the time-like trajectories of £(4) > 1(4) > ^ (4) > realize 
the physical fram es of reference, in M 0tter~ Cattane 0 ’ ̂  sense, S4 , S2 , S3, respec
tively. We assume that the coordinates (xv) are adapted to S4 , (x*) to S2 , (x{) 
to S3. In such coordinate systems, the hypersurfaces 2 and S are so 
characterized: 2  : r' =  r0, with respect to (pc1') ; r  =  rQ, with respect to 
(x1) ; 2 : r  =  R 0, with respect to (^i) ; r  =  R0, with respect to (x1). The 
points of 2 and 2 belong to A4 D A2, and to A2 D A 3, respectively. Then, 
it follows that, on 2  the coordinates (x*) must can be expressed as a func
tion of the (x1'). The same thing is true, on 2, for the coordinates (x1). and 
(x*). Such connections are the ones expressed by (1), that is, we must have:

(2) x* =  K ’ / • • • o n S  , ** =  B“xu- • • on 2  ,

A%r, and B“ being, up to the invertibility conditions,, arbitrary constants.

The local coordinates (x%f) , (x%) , (x%)i by definition, are comoving with the 
fram es S1 , S2 , S3, respectively. Therefore, in (2), the form er relation describes 
on 2, the motion of the fram e  S4 with respect to S2, while the latter describes, 
on 2, the motion of S2 with respect to S3. In  our situation, corresponding to a 
relative rotation of the matter evolving on 2  and 2 , it seems reasonable to 
reduce (2) to the form \

(3) <p =  v]cp' +  X ct', z  — z' , ct =  <79'+ v ct* • • • on 2 ,

(3') 9 =  0C9 +  ß e t , z  =  z  , et =  Y9 +  S ct • • • on 2 ,

describing the relative rotation between S4 , S2 and  S2 , S3, respectively.
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The constants co (p , (x) : 

to (i , 2) =  ck/v , <0 (2 , i) =  — cX/7) , CO (2 , 3) =  <;ß/8 , co (3 , 2) =  — cß/a

<03/2 interpreted as the coordinate angular velocities of two contiguous fram es, 
A, of Sp with respect to S!JL. Such constants, which w ill have an invariant 

characterization in terms of K illing  vectors, w ill be determined requiring the 
junction conditions among the regions Aa .

We shall assume that in each region Aa one can choose adapted coordinates which are 
time-orthogonal too: gAP =  o [4]. One can show that such a choice should not imply any 
loss of generality if the region Aa were empty. In the present situation such a condition does 
not hold since we are in the presence of e.m. fields, and the previous assumption must be 
considered as a useful simplifying hypothesis. Following such remarks we shall agree that 
the coordinates (x*') , (x*) , (x*), are time-orthogonal in A1 , A2 , A3, respectively, hence 
the physical frames of reference will be static in Levi-Civita’s sense in the homonymous 
regions A^ (and only there!).

Such fram es seem to be the most natural ones in order to describe physics 
in our space-time.

According to our hypotheses we suppose that> with respect to S3, the charged 
shell is at rest, whilst the outer shell is uniformly rotating round the common 
axis, with a known standard angular velocity co (1).

2. T h e  E in s t e in - M a x w e l l  e q u a t io n s

In each region Aa , using adapted coordinates, we can write the metric 
in the general Levi-Civita’s form [8], [2]:

(4) ds2 =  e2{k~u) (dr2 +  dz2) f  R2 (r) e~2u dcp2 —■ c2 e2u dt%,

k (f) , u (f) , R (f) being unknown functions, different for each region Aa , 
that we have to find by means of the gravitational equations Gk =  — yßl > 
G£ and Si being the Einstein-Levi-Civita’s tensor and the energy-momentum 
tensor of the e.m. field, respectively:

r ' i  __ t~) i  t? CU   I? T?^ * 3^ t? rpZwLr&— ------ - Ojc K ,   - Ö k Fim r  .
2 4

(1) With respect to a frame S, represented by a unit time-like vector field the 
standard four-velocity V* is defined as: V* =  dx^/dT , dT =  — dx^/c being the relative 
standard time-interval [3], [4].



76 Lincei -  Rend. Se. fis. mat. e nat. -  Vol. LXIV -  gennaio 1978

W ith respect to the metric (4), G\ is identically zero if i  f i  k , which 
implies S l ~  o for i f i k  too. The remaining gravitational equations for i  =  k, 
conveniently combined, give rise to the following system of ordinary diffe
rential equations in the unknown functions R (f) , u (r) , k (r) :

I R " = x ( - ^ ( s i  +  s |)

J 2 « "  +  2 u' R '/R  =  X (— *)* (Sì +  SÌ +  Sì  -  Sj)/R 

«'* — k' R '/R  +  R "/R  =  x { ~ g f  Ss/R 

[ k"  +  u'* =  x { ~ g f  SÎ/R

the prime denoting differentiation with respect to r. Together with (5) we 
have to consider the Maxwell vacuum field equations:

(50 =  o , Fut,i +  FH)i +  F iUJc — o ,

which on account of G3-symmetry, become:

(6) è (yiohn Flm &> & ),* =  o , (FiJc (̂W) £(»)),a — o ,

respectively. In (6), the indices u , v take the values 2 , 3 , 4 ;  — (— g f  z%kim
is the Levi-Civita’s tensor, and for each region Aa one has to adopt the respec
tive Killing vectors.

(5) , (6) are the Einstein-Maxwell equations in the unknown functions 
R (r) , u (r) , k (r) , Fy (r).

In order to obtain the physical interpretation of the tensor components F^, we shall 
use its natural decomposition with respect to the frames Sa . That is, we shall call relative 
electric field and relative magnetic field with respect to Sa, the spatial vectors =  yir ys FfS, 
FF =  1  Yfcr Ths respectively. Where y  is the unit time-like vector field defining
Sa , y ir =  (gif +  y i yr) is the space-projection tensor, and === y]irJch yr is the spatial Levi- 
Civita’s tensor [1], [4].

Taking into account the conditions SI — o for i f i  k , the equations (6) 
can be immediately solved: for each region Aa , there are three qualitatively 
different possibilities. That is, one can experience either a radial electric 
field E 1 — — ©/(detyV)^, or an azimuthal magnetic field H 2 =  — A/y4, 
or an axial magnetic field H 3 =  — T7y4. 0 , A , Y, being constants. Obser
ving that H â is necessarily associated with an axial current, absent in the 
present situation, we can put, without any loss of generality, A =  o . On 
account of the charge distribution hypothesized, there is no other alternative 
than to assume the presence, in  A4, of an axial magnetic fields and in A 2 and 
A 3, of a radial electric fie ld .
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In other words the solutions of the Maxwell equations (6) in the regions 
Aa are:

(7) F i '2' =  Y /( -* )*  • • • in A, , F 14 =  ©/(— *•)* • • • in A2,

F44 =  A/(— gŸ  • • • in A 3

the remaining Fl'k', F1**, F4*, being zero. T  , 0 , A, are (pseudo) scalar-va
lued constants to be determined by imposing the e.m. junction conditions 
on E and 2. For the solutions (7) one has +  S3' — o , Si -f- S3 =  o , 
Si +  S | =  o, so it is possible, in each region Aa , to assume R (r) — r  (cfr. (5)), 
and (5) reduce to three (only two independent), equations

i 2 u "  +  2 u'Ir  =  • /  ( —  g f  ( S a  —  S $)/r

(8) « '2 —  k ' l r = x  ( - g f  Sllr ■ ■ ■ in A , , A2 , A s ,

I  k ” + u ' 2 =  % (— g f  Stir

in two unknown functions: u (r) , k (r). Of course for each region Aa one has 
to adopt the respective adapted coordinates and the respective values of S&. 
In each region Aa (8), can easily be solved, each solution depending on three 
new constants: two to be determined by means of regularity and junction 
conditions, the third one being physically unessential. Disposing conven
ie n tly  of these latter, the solution of (8), in each Aa , can be cast in the 
following form [2] :

A 1 , the inner region'.

(9) di-2 =
(1 + /f r /2)2
(1 +  ha2)2

(dr'2 +  d d 2 —  d  dt'2) +  r '2 (i +  h t f f  
(I +  hr'2)2

dcp'2

where h == y ^ 2l& and a is a constant homogeneous to a length. Notice that 
in (9) only a new essential constant a appear, the other one, present in 
the general solution, has been put to zero in order to realize full regula
rity in A j. ■

A2 , the intermediate region'.

(10) d j* = ( r \ *  [ i - H  (r!py*>Y 
\ p )  (1 — H)2 [ ( f ) '

(dr2 +  d-S'2) +  r 2 d<p2

( 1 - H ) 2 
[ i - H  ( r t p y ^ f

d^2

where H == X®2/^ b2> and P , b are new essential constants; p  is homogeneous 
to a length, b-(L evi-C iv ita}s mass)—is now different from zero, since it does 
not disturb the regularity in A2.
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A 3, the outer region:

( » )
/ f \ 2B [ ! - K  ( r / g) - 2B]a 
W /  ( I - K ) S

X

X [(fY ivY( d f 2 + d t 2 ) + **d^2]

\ q  )  [ I — K {rjq)~iV‘f

where A =  (qlfi)b [1 — H (çlfi)~2b]l( 1 —■ H) and K =. x ^ 2/8 B2.
q and B are other essential constants: q is homogeneous to a length, B, 

is another Levi-CivitcCs mass, which, as b in A2, has to be assumed different 
from zero.

3. Ju n c t io n  c o n d it io n s  fo r  t h e  g r a v it a t io n a l  p o t e n t ia l s  
a n d  t h e  E . M . F ie l d s

The gravitational junction conditions request, first of all, the continuity 
of the 3-dimensional metrics induced on 2  and 2  by the metrics of the con
tiguous regions AX, A 2, and A2 , A 3, respectively [2]. That is,

0  2) gu'v' (r0) dxu' dxv' -= guv (r0) dxu dxv • • • on 2,

(12') gm (Ro) dx” dx° =  guv (Ro) d*“ dx* • • • on 2  ( u , v  =  2 , 3 , 4 ) .

(12) yields a — fi =  r0y and imposes three relations among the constants 
7] , X , er , v, determining the connections (cfr. (3)), between the adapted coor
dinates (.xv) and (xf). According to such relations, one rem arkably finds 
that (3I) can be written in the “Lorentz-like ” form:

(13)
ro ? ' +  v C1 » 2) t'r0 9 =  ■!....-..-zT
y I — ^2 ( i , 2)/c2

_  (1 > 2)/r2 +
Vi — v2 (1 , 2)/r2

where v  (1 , 2) =  — z; (2 , 1) =  r0 co (1 ,2 ) is the magnitude with sign, on 2, 
of the standard linear velocity of S-t with respect to S2. The scalar-valued 
constant <0(1 , 2), angular velocity of Sx with respect to S2, is given by 
<*> (I » 2) =  — «  (2 , I) =  ^5(2,-S(4) (^o)/l(2) -S(2) (ro) =  A /(I + À 2 ?o)4- In a simi- 
lar way (12') gives q =  R 0 and allows (3') to be written as:

( h )
f i  — w* (2 , 3 )/c2

;  =  Ä ; cpR0 A2?^(2,3)/g2+ /
Vi —  w a (2 , 3)/<r2

where w  (2 , 3) .= — w  (3 , 2) =  R 0 A2 <0 (2 , 3) is the magnitude with sign, 
on 2, of the standard velocity of S2 with respect to S3. The scalar-valued
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constant ( 0 ( 2 ,  3), angular velocity of S2 with respect to S3, is given 
by CO (2  , 3) =  — CO (3 , 2 ) =  4) (R0)/^(2)-ê(2) (Ro) =  *ß/(I +  ß2 Ro A4) l
The parameters X and ß, or preferably v  (1 , 2) =  r 0 cX/(i +  X2ro)* and 
w  (2  , 3) — R 0 A2 cß/(i +  ß2 Ro A4) ,̂ still unknown, will be determined later 
when we deal with gravitational junction conditions of higher order.

According to (13) and (14), the coordinates systems (xv ) , (x%) , (xl), are physically 
admissible over regions larger than Ax , A2 , A3, where, originally, they were introduced 
respectively. Beyond such larger regions one cannot define the stationary frames Sx, S2, S3. 
According to our statement of the E-R problem we have to characterize the dynamical state 
and the e.m. properties of the inner shell with respect to the frame S3. This is possible only 
if S3 extends over the region A2 too. This implies the following limitations for the ratio of the

radiuses of the shells: | w  ( 2 , 3  )/c | <  ) A“2 <  | c/w ( 2, 3) ] .

I f  this condition held then one could obtain, on 2 , the angular velocity o f 
S3 with respect to Sx:

a s ) « ( 3 , 0  =
to (3  , 2 ) +  CO (2  , 1)

I +  ro CO (3  , 2 ) to (2  , I) i e

Since the inner shell is at rest with respect to S3 , v (3 , 1) =  r0 co (3 , 1) can be 
interpreted as the magnitude with sign} on 2 , of the standard linear velocity of 
the inner shell with respect to Sx. ' ■

The e.m. junction conditions that we have to impose on the hypersur
faces 2 and 2 can be obtained from Maxwell equations with sources, and can 
be written:

(16) [Fw]ro nk =  P  (r0) , [yjKim Fjm]r> «i =  o • • • on 2 ,

( 16') [Fh ]r .%  = P ( R o )  , [yfam FZm]Ro ni — o - • - on 2  ,

where w* =  (i , o , o , o) and n { ~  (i , 0 , 0 , 0 )  are the normal vectors to 2  
and 2 respectively. The symbol [M] means the discontinuity of the quantity 
M on the hypersurface specified, e.g. [M]r# — lim {M (r0 +  £)— M (r0— s)}*

_ _  ° e->0+
sk — § (2 )  and sk =  & (2) are the four-current densities evolving on
2 and 2 respectively, & (2)) and S (2) just being invariant Dirac measures 
based on such hypersurfaces.

According to our hypotheses the inner shell is uniformly charged and at 
rest with respect to the frame S3, that is

0 7) T  =  Po &*/(— S* $a)4 =  ( o , p 0w( 3 ,  2 ) /r0 c , 0 ,  Pq)/(i — w (3 . z f l r f 2,
(4) (4) (4)

po being the proper surface charge density of the inner shell, w (3 , 2) =  
=  r 0 co (3 , 2) is the magnitude with sign, on 2 , of the standard linear velocity 
of S3, (hence of the inner shell), with respect to S2.
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The outer shell is uncharged and in uniform rotation with respect to S3.
This implies only ]h % =  o, which establishes one relation among the four 

(4)
components of J*, hence, three among them are, a priori, available. Introdu
cing (17) in the right member of (16) and taking into account the previous 
constraint, one obtains:

(18) T  =  p > ( 3 ,  I ) — Z/(2S I )]lc , © =  --- P̂ o [1 ---v ( i  , 2) ZÖ (3 , 2)/c2],

(18') A =  0 (1 — w20 , 3)/c*)“ *,

(19) f i  =  -  ( ^ ) 1+26 A"2 A •

p' and p are the relative surface charge densities of the inner shell with respect 
to Sx and S2 respectively:

p '=  -  V  L /C -  C* C*)* =  Po [I (3. W *(4) (4) (4)

f> =  — S* Ji/(— =  Po [I — ™ (3 . 2flc2]~K(4) (4) (4)

At first sight the expressions (18) and (18') bear evidence, in a particular 
clear way, of the connection among the pseudo-scalars \F, © , A, describing 
the e.m. fields in Ax , A2 , A 3, and the scalar co (oc, fx) associated to the mutual 
rotation of the frames Sa . The constants co (a , (x), together with b and B, 
still unknown, will be determined later by means of the gravitational junction 
conditions of higher order. From (19) comes out, according to our assumptions, 
that, with respect to S3, a current flows in the outer shell. Such a current is 
absent pnly if co (3,2)  =  o. That is, as we shall see later, if the outer shell is 
at rest or if we do not take into account the gravitational interactions (x — o). 
Hence, in order that our statement of the E-R problem makes sense, we have 
to suppose that the current (19) is initially flowing in the outer shell. Moreover 
this latter should be a perfect conductor, otherwise the current, suitably sup
plied, will tend to zero by heating, wia the Joule effect, the outer shell, and 
we can reasonably ^infer that its angular velocity would decrease till the 
reciprocal rest between the shells. The presence of such a current is the price 
we have to pay in order that the assumed staticity of the frames Sa holds in 
the regions Aa .

We can now formulate properly the structural hypotheses about the 
thin shells evolving on the hypersurfaces S and S, and to impose the gravi
tational junction conditions taking into account such energetic structures. 
We shall deal with such considerations and with the inferences that may be 
drawn from them, in the second part of this paper.
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