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Equazioni d ifferenzia li ordinarie. —  Further results on the exi
stence o f periodic solutions o f a certain third order differential equation. 
Nota di James O. C. E zeilo , presentata dal Socio G. S a nso ne .

R iassunto. — Si dimostrano due teoremi di esistenza di soluzioni periodiche delFequa
zione differenziale ordinaria del terzo ordine

x +  (i) x +  4> (x) x +  f(x) = p (/)

con p (/) funzione periodica.

I. Consider the third order differential equation

(1.1) x  +  ax +  (j) (x) x  + /  (x) =  p  if)

in which a is a constant and are continuous functions depending
only on the arguments shown and p  is co-periodic in t> that is p ( t  +  u)  =  p  (/)

x

for some co >  o. Let O == J <f> (£) d£. There is a result in [1] by Reissig which
0

shows that if the following conditions hold:

(i) a ^  o , (ii) J ^  I”1 j /  (x) J -* o as | x  | -> 00 , (iii) f  (x) sgn x  >  o
6)

(I x  I >  1) , (iv) j ^  j '1 I O (x) I -> o as \ x  \ -^  00 and (v) J p  (f) dt — o,
0

then (1.1) has at least one co-periodic solution. The restrictions (i) and (iv) 
here Were removed in a subsequent paper [2].

We propose, in the present paper, to examine the above result with the 
following weaker conditions of/,<j> in place of Reissig’s (ii) and (iv) respec
tively:

(1.2) j f i x )  I <  Ax \ x  j +  A2 ,

(1.3) | ® ( ^ ) | < B 1 | ^ | + B 1 ,

for all x, where A { >  o , B* >  o (i =  1 , 2) are constants with Aj , Bjl suf
ficiently small. The investigation will, furthermore, be concerned with the 
more general equation

(1.4) x  +  ip (x) x  +  § (x) x  +  f ( x )  =  p (t)

(*) Nella seduta del 14 gennaio 1978.
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in which the coefficient t | n o t  necessarily constant, is a continuous function 
depending only on x: but our other main objective is to identify certain equa
tions (1.4) for which, subject to the conditions ((iii) and (v) above):

(1.5) /  (x ) sgn x > o  ( \ x \  >  1)
CD

(1 .6) j p  (j) 6t  =  o
0

the use of ju s t one (only) of (1.2) or (1.3) would suffice for the existence of 
an 6>-periodic solution. The position is summed up more clearly in the 
following two theorems for (1,4) which will be proved shortly:

THEOREM i. Given the equation (1.4) suppose that (j> , /  and p  are subject 
to (1.3), (1.5) and  (1.6) respectively. Then there exists a constant sQ >  o such 
that i f  Bx <  sQ, then (1.4) admits of at least one co-periodic solution fo r  all 
arbitrary i{/ (x).

Note here the absence of a restriction on 41-
The next theorem covers the special case corresponding to a f=- o when 

results are specialized to (1.1).

THEOREM 2. Given the equation (1.4) in  which p  is subject, as before, to
(1.6) , suppose that f  is subject to (1.2) and  (1.5) and that

(1.7) ^ ( j )  >  a >  o fo r  all y

or y otherwisey that

(1.8) <]> (y ) <  ß <  o fo r  all y  y

fo r  some constants a , ß. Then there exists a constant e1 >  o such that i f  Aj <  Sj 
then (1.4) adroits of an co-periodic solution fo r  all arbitrary cj> (pc').

Observe that, when specialized to the case constant with /  bounded 
Theorem 2 here gives a significant improvement on the results in [2], [3] 
and [4] for the same equation.

2. The method of proof of either theorem will be by the Leray-Schauder 
technique, just as in. [1] except that for our purpose it will be convenient 
here to consider the parameter-dependent equation in the form:

(2.1) x  -j~ (x) x  +  [4  O ) *  +  (1 —  (J-) Cl x  +  y /( x )  =  [J.p (f)

for dealing with Theorem 1, and in the form:

(2.2) x  +  {(1 —  oc) (X +  (*)} * +  (*) *  +  C1 —  V-) *2x  +  V f  (*) =  V-P (0

for dealing with Theorem 2 when ^ is.subject to (1.7). The case whenAp is 
subject to (1.8) can also be handled with the same (2.2) but with a replaced

4. — RENDICONTI 1978, voi. LXIV, fase. 1.
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by (— ß) as will be explained in § 6. Here in (2.1) c1 is an arbitrarily chosen, 
but fixed positive constant. The constant in (2.2) is also positive, but its 
value is to be fixed (sufficiently small) to advantage later (see (6.4)).

The equations (2.1) and (2.2) reduce to the same (1.4) when [x =  1 and 
to the constant-coefficient equations:

(2.3) x  +  cx x  =  o

(2.4) X  +  OLX +  C% X  =  O

when [i =  o. It is easily verified that neither of the auxiliary equations cor
responding to (2.3) or (2.4) has a purely imaginary root. Thus it will now 
be sufficient, as in [1], for our proof of Theorem 1 or T heorem s with subject 
to (1.7) to establish merely that there is fixed constant D >  o, whose magni
tude is independent of [x , such that any to-periodic solution x  (f) of (2.1) or
(2.2), corresponding to o <  (x <  1 satisfies:

(2.5) I x  (f) I <  D , I x  (f) I <  D and | x (t) | <  D (t  <  t <  t  +  co) 

for some t.

3. NOTATION. Let A 3= m a x  I p ( t )  |. In what follows here the capitals
0<t<cù

D , D 0 , Dx • • • are finite positive constants whose magnitudes are independent 
of the param eter [x and, indeed, in the context of Theorem 1 depend only 
on c1 , A 3 , B2 , <j> , and / ,  and, in the context of Theorem 2, on c% , A 3 , A2 , 
(|) , and / .  The D ’s without suffixes attached are not necessarily the same 
in each place of occurrence but the numbered D ’s: D 0 , Dj ,* • • retain a fixed 
identity throughout.

4. Some preliminary results. As we shall be dealing extensively here

with integrals such as I x* d t , I x 2 d t , x2 dt taken over time intervals of
J J J T + CÛ T0 + W

length to, we might as well note that if x  is co-periodic the x 2 dt =  x2 dt
CÙ T Tq

for arbitrary t  and t 0, since either integral equals j*x2 dt if x is co-periodic.
T + CO T + CO 0

The same is true of j  x 2 dt and j x2 dt.
T T

We shall require specially the use of the following two subsidiary results: 

Lemma i . I f  x  =  x  (f) is continuous and (0-periodic in t then

T + (0 T + CO

(4-0 j" x~ à t <  )  - or re-2 J  cl/
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Proof of Lemma. Let x  have the Fourier expansion:

oo
(4.2) x  ^  lù  (ar cos 2 ^co“1 rt -f- br sin 2 ttco-1 rf) ,

so that i: and x  in turn have the corresponding expansions:

00

£  2 7TC0-1 2  — r  {ar sin (2 ^co“1 rt) — br cos (2 to)“1 rt)}
r = 1 

00

X ~  4 7Z2 CO“2 2  r2 {ar cos (2 ĈO“1 7"/) +  br sin (2 7TC0“1 r^)} . 
r = l

We have, in the usual manner, from the expansion for x  that
T + C O

/ OO
x  ài — z it « -1 2  r  (<*r +  $ )

r = l

and from the expansion for x  that

T + 6 0{* OO
I #2 d£ =  8 TC4 6)~3 2

J
4 / 2  « /2nr  (<3r +  0r)

>  8 7T4 o> 3 (al +  bl)
r=1

T +  CO

>  4 7t2 CO“2 x 2 dt

by (4.3), which proves (4.1).

Lemma 2. Let x  ~  x ( t )  be an co-periodic solution of (2.1) of (2.2) cor
responding to o <  (JL <  I. Then

T-f-CO T-t-CO

(4.4) j x 2 dt <  Do +  Di j x 2 dt
T  T

fo r  some D 0 , T)1 .

Proof of Lemma. Let x  have the Fourier expansion (4.2) so that then

(4 -5)

T - f t ù

/
x  dt = 2ao 2  & +  $)■

whether or not x  is a solution of (2.1) or of (2.2).
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If in particular x  (f) is a solution of (2.1) or of (2.2) then we have, in 
view of (1.6) on integrating (2.1), (2.2) that

(4.6) J K 1 — (a) ci x  +  y-f (*)} dt =  o (i =  I , 2).

Since Ci >  o (i — 1 , 2 )  and /  is subject to (1.5) it is clear from (4.6) with 
o  <  [x <  I that

(4.7) I % ( t 0) J <  I for some t 0 such that o <  t 0 <  co .

Now the coefficient aQ in (4.2) is given by

aQ =  co-1 x  (t) d t

T 0  +  CO

00 d  ̂ ,
0̂

since # if) is co-periodic in t . Now
To+CO XQ +  (Ùj x  (t) d t =  \tx ( /) ] ;;+ “ — j tx (t) d t . 

To To
To + Û)

== co# ( tq) — J  tâ (t) d t ,

so that, by (4.7) »
*0

T q +  CO

I a0 I <  I +  co-1 j t j % (t) ] dt 

and therefore, since o <  t 0 <  co,

T0+û>

1 I üS 1 +  D I % (f) I àt
10

Tq+co

<  I +  D ( j * ’ * ) '
T0

by Schwarz’s inequality. Hence

(4.8) <4 < d 2

. Tq + W

( 1  +S*Zdt)
■ ■ *0
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for sufficiently large D2. As for the term  under the summation sign in (4.5) 
it is clear by comparison with (4.3) that

(4-9) 2  ( 4  +  tf)  <  D

The result (4.4) now follows on combining (4.8) and (4.9) with (4.5).

5. P roof o f Theorem i .  Let now x  — x ( i )  be any co-periodic solution 
of (2.1) with o <  (i, <  I and (j> subject to (1.3).

Define I0 >  o , Ix >  o , I2 >  o by:

we have, on multiplying (2.1) by % and integrating, that

so that, by (1.3) and since o <  <  1,

(5-0 < B X

(Ù

0

I a; I \ x  I dt + dt +  A 3

<  Bi Iq I2 +  d  (B2 ^2 +  A 3 Ii) j

by Schwarz’s inequality. But, by (4.4),

(5.2) IQ < 0 0 + 0 , 1,

<  D 3 (1 +  I2) ,

by (4.1), for sufficiently large D 3. Thus (5.1) also implies that

I2 <  D 3 Bx I2 +  (Bx D 3 +  D) I2

by (4.1); and hence if B1 is fixed, as we assume henceforth, such that 

(5-3) B1 < i D s' 1,

Il <  DI
then
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from which it follows at once that 

(5 4 ) I22 < D 4 ,

and then also, by (4.1), that

(5 .5) i ï < d 5 .

Now a combination of (4.7) with the identity:
t

x  (f) =  x  ( t 0) +  j x  (s) dx 

0̂
shows that

T q +  CO

max I x  (t) I <  I +  I x  (s) | ds
y<t<(ù J

0̂
T °  +  tó  ^

( j x2 (J) d j  j<  I +  w4

by Schwarz’s inequality. Hence, by (5.5),

(5.6) I x  00 I <  d 6 =  I +  o* d | (o <  * <  Co) .

Next, since x  (o) =  x  (co) it is clear that x  ( t x) =  o for some t x6 [o , co]. Thus 
we have, as a result of the identity:

t

that

x  (t) =  % (tx) +  x (s) ds ,

max
0<£<co

T i  +  CO

I % 00 I j I x (s) I ds

<  CO'

by Schwarz’s inequality, and therefore, by (5.4), that

(5.7) I x  (t) I <  D7 =  cô  DJ (o <  t <  co) .

It remains now to establish the last estimate in (2.5). For this let us note 
from (2.1) that x =  Q, where by virtue of (5.6) and (5.7) and the boundedness 
of p  the function Q satisfies

| Q 1< d 8 ( l * |  +  i ) .
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Thus if we multiply both sides of (2.1) by x  and integrate we shall obtain 
that

T + C D  T  +  CDj x2 dt <  D8 j \x

T + C D

I x  j àt +  D8 j  j 3c ] d/

<  D

T  +  CD T  +  CD

x* dt +  D

T  +  CD

T

by Schwarz’s inequality. Hence, by (5.4),
T  +  CDj x2 àt <  D

T + C D

T

which in turn implies that

(5.8)

T + C D

f  x* d t <  D,
T

Now, since x  (o) =  i: (o>) it follows that x (t2) =  o for some [o , co]. The
refore we have, from the identity:

t

x  (t) =  x ( t 2) +  J x (s) ds ,
2̂

that

max I x (t) ] <  (F
0 <t<(ù

t 2 + cd

y J x2 (s) d^^ <  D
T2

by (5.8).
This completes the verification of (2.5) for all co-periodic solutions of 

(2.1) with o <  (x <  I and Theorem 1 now follows with £0 = J D ^ " 1 (See 
(5.3)).

6. P r o o f  o f  T h e o r e m  2. We deal first with the case ^ subject to (1.7). 
Let then x  =  x  (/) be any co-periodic solution of (2.2) with o <  [x <  1. The 
whole substance of our proof, as pointed out in § 2 will be to establish (2.5) 
for x  (t). W ith the groundwork laid out in § 4 the pattern for the proof of 
(2.5) here is almost as in § 5 and we shall therefore skip any inessential 
details.

Indeed the main difference between our procedure here and the proce-
CD

dure in § 5 is in the method for estimating j x 2 d t  This time it is convenient
0
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to multiply our parameter-dependent equation (2.2) by x  (not by % as in § 5) 
and then integrate. Since

J xx  dt =  xx  — J x 2 , J xx  dt =  x x  —  j  £2 dt

X

- —  j  £(j) (£) d£ =  x§ ( x ) x  , J x<p (x) x  dt =  x xY (x) — j' x xY (x) dt
0

v
where (y) =  J <{/ (rj) dv), and ^ is co-periodic, the integration leads at once

to the result:
co co co

(6.1) (1 —- pi) o c j dt [ijx 'Y  (x) dt = J{( i  — fi.) c2x 2 — YXP} d/.
0 0 0

By (1.7) ^ > 'a and therefore also yW (y) >  ay2 for all y.
Thus the inequality (6.1), if (1.2) holds, implies that

CO CO CO

(6.2) /  x 2 dt <  a-1 (c2 +  Ax) J x 2 dt  +  D J | x  | dt
0 0 0

CO CO

<  a -1 (c2 +  Ax) j  x 2 dt  +  D ^ J x2 dA  ,
0 0

by Schwarz’s inequality. By (4.4) and (5.2) this implies in Turn that

CO <0 CO

(6.3) J x2  dt <  oT1 (c2 +  A i )  D i  J jù2 d  ̂ +  D  j  ^  £* dA +  A x  +  1 1  .
0 0 x 0

Hence if for example c2 and Ax are fixed, as we assume henceforth, such that

(6.4)

then we have from (6.3) that

J W < d { ( J *  dt\
0 0

which, in turn leads to (5.5) and therefore to (5.6) as in § 5.

o <  c2 <  —- ocDi2 , Aj <  -— aDi
I

~4

+  I
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It remains now to obtain the estimates for \ x ( t )  | and | x (f) | in (2.5). 
The estimate for \ x ( t )  | requires (5.4), just as in § 5, and to establish 

this we note that (2.2) implies that

(6 .5) x  +  { ( I —  (a) oc +  [jwJ; (x)} X =  R

where, because of the boundedness, just established, of j x  (t) ] by a D, the 
function R satisfies

| R ] < D ( U |  +  i ) .

Thus if we multiply both sides of (6.5) by x  and integrate we shall have, since 
x  is co-periodic and (1 — p) a +  >  a, that

a l x 2 dt <

CO CO

D ( J  \ x  I \ x  \ dt dr j I x I d/^

to  to  <0

< JI J T  d t j   ̂ l'x2 d/j*+ ( J  X2 d t j  j

<

to

d ( J *

by (5.6) which has just been established for co-periodic solutions of (2.2). 
Hence

toJ x2 dt <  D
0

as before and the estimate (5.7) then follows as in § 5 for our solution x  of (2.2).
W ith the boundedness (each by a D) of | ^ 00| and | •£(*)) established, 

the estimate (5.8.) can now follow, for our solution of (2.2) exactly as in § 5, 
and so also the boundedness of | x (t) | by a D for orbitrary t e  [o , to].

This concludes the verification of Theorem 2 with e3 =  — ocDf2 (see (6.4)) 
when ^ is subject to (1.7). ^

To tackle the case ^ subject to (1.8) we had pointed out in § 2 that we 
should deal with the equation (2.2) with a replaced by (— ß). The effect of

<0

the replacement on the estimate for j x 2 dt  is merely to replace or1 in (6.2) by
0

ß-1, as is easily seen by multiplying both sides of (6.1) by (— 1) and noting
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that — fxy T  (y) >  fxßy2 so that then

CO CO CO

( I — fx) ß J X2 dt  — (X j  x W  (x) àt >  ß j  £* à t .

Thus the estimate (6.3) comes through here with ß in place of a and the rest 
of the proof when is subject to (1.8) can now follow from that point exactly 
as before.

This completes our proof of Theorem 2.
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