Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

James O.C. Ezeilo

Further results on the existence of periodic solutions of a certain third order differential equation

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 64 (1978), n.1, p. 48-58.

Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1978_8_64_1_48_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Equazioni differenziali ordinarie. - Further results on the existence of periodic solutions of a certain third order differential equation. Nota di James O. C. Ezeilo, presentata (*) dal Socio G. Sansone.

Riassunto. - Si dimostrano due teoremi di esistenza di soluzioni periodiche dell'equazione differenziale ordinaria del terzo ordine

$$
\ddot{x}+\psi(\dot{x}) \ddot{x}+\phi(x) \dot{x}+f(x)=p(t)
$$

con $p(t)$ funzione periodica.
I. Consider the third order differential equation

$$
\begin{equation*}
\ddot{x}+a \ddot{x}+\phi(x) \dot{x}+f(x)=p(t) \tag{I.I}
\end{equation*}
$$

in which a is a constant and ϕ, f, p are continuous functions depending only on the arguments shown and p is ω-periodic in t, that is $p(t+\omega)=p(t)$ for some $\omega>0$. Let $\Phi \equiv \int_{0}^{x} \phi(\xi) \mathrm{d} \xi$. There is a result in [1] by Reissig which shows that if the following conditions hold:
(i) $a \neq 0$,
(ii) $|x|^{-1}|f(x)| \rightarrow 0$ as $|x| \rightarrow \infty$, (iii) $f(x) \operatorname{sgn} x \geq 0$ ($|x| \geq \mathrm{I}$), (iv) $|x|^{-1}|\Phi(x)| \rightarrow 0$ as $|x| \rightarrow \infty$ and (v) $\int_{0}^{\omega} p(t) \mathrm{d} t=0$, then (I.I) has at least one ω-periodic solution. The restrictions (i) and (iv) here were removed in a subsequent paper [2].

We propose, in the present paper, to examine the above result with the following weaker conditions of f, ϕ in place of Reissig's (ii) and (iv́) respectively:

$$
\begin{align*}
& |f(x)| \leq \mathrm{A}_{1}|x|+\mathrm{A}_{2} \tag{I.2}\\
& |\Phi(x)| \leq \mathrm{B}_{1}|x|+\mathrm{B}_{2} \tag{I.3}
\end{align*}
$$

for all x, where $\mathrm{A}_{i} \geq 0, \mathrm{~B}_{i} \geq \mathrm{o}(i=1,2)$ are constants with $\mathrm{A}_{1}, \mathrm{~B}_{1}$ sufficiently small. The investigation will, furthermore, be concerned with the more general equation

$$
\begin{equation*}
\ddot{x}+\psi(\dot{x}) \ddot{x}+\phi(x) \dot{x}+f(x)=p(t) \tag{I.4}
\end{equation*}
$$

in which the coefficient ψ, not necessarily constant, is a continuous function depending only on \dot{x} : but our other main objective is to identify certain equations (I.4) for which, subject to the conditions ((iii) and (v) above):

$$
\begin{align*}
& f(x) \operatorname{sgn} x \geq 0 \quad(|x| \geq 1) \tag{I.5}\\
& \int_{0}^{\omega} p(t) \mathrm{d} t=0 \tag{I.6}
\end{align*}
$$

the use of just one (only) of (1.2) or (1.3) would suffice for the existence of an ω-periodic solution. The position is summed up more clearly in the following two theorems for (1,4) which will be proved shortly:

Theorem i. Given the equation (1.4) suppose that ϕ, f and p are subject to (I.3), (I.5) and (I.6) respectively. Then there exists a constant $\varepsilon_{0}>0$ such that if $\mathrm{B}_{1} \leq \varepsilon_{0}$, then (1.4) admits of at least one ω-periodic solution for all arbitrary $\psi(x)$.

Note here the absence of a restriction on ψ.
The next theorem covers the special case corresponding to $a \neq 0$ when results are specialized to (I.I).

Theorem 2. Given the equation (1.4) in which p is subject, as before, to (1.6), suppose that f is subject to (1.2) and (1.5) and that

$$
\begin{equation*}
\psi(y) \geq \alpha>0 \quad \text { for all } y \tag{1.7}
\end{equation*}
$$

or, otherwise, that

$$
\begin{equation*}
\psi(y) \leq \beta<0 \quad \text { for all } y, \tag{1.8}
\end{equation*}
$$

for some constants α, β. Then there exists a constant $\varepsilon_{1}>0$ such that if $A_{1} \leq \varepsilon_{1}$ then (1.4) admits of an ω-periodic solution for all arbitrary $\phi(x)$.

Observe that, when specialized to the case $\psi \equiv$ constant with f bounded Theorem 2 here gives a significant improvement on the results in [2], [3] and [4] for the same equation.
2. The method of proof of either theorem will be by the Leray-Schauder technique, just as in [I] except that for our purpose it will be convenient here to consider the parameter-dependent equation in the form:

$$
\begin{equation*}
\bar{x}+\mu \psi(\dot{x}) \ddot{x}+\mu \phi(x) \dot{x}+(\mathrm{I}-\mu) c_{1} x+\mu f(x)=\mu p(t) \tag{2.1}
\end{equation*}
$$

for dealing with Theorem 1 , and in the form:

$$
\begin{equation*}
\bar{x}+\{(1-\alpha) \mu+\mu \psi(\dot{x})\} \ddot{x}+\mu \phi(x) \dot{x}+(1-\mu) c_{2} x+\mu f(x)=\mu p(t) \tag{2.2}
\end{equation*}
$$

for dealing with Theorem 2 when ψ is subject to (1.7). The case when ψ is subject to (I.8) can also be handled with the same (2.2) but with α replaced
by ($-\beta$) as will be explained in $\S 6$. Here in (2.I) c_{1} is an arbitrarily chosen, but fixed positive constant. The constant c_{2} in (2.2) is also positive, but its value is to be fixed (sufficiently small) to advantage later (see (6.4)).

The equations (2.1) and (2.2) reduce to the same (1.4) when $\mu=1$ and to the constant-coefficient equations:

$$
\begin{align*}
& \ddot{x}+c_{1} x=0 \tag{2.3}\\
& \ddot{x}+\alpha \ddot{x}+c_{2} x=0
\end{align*}
$$

when $\mu=0$. It is easily verified that neither of the auxiliary equations corresponding to (2.3) or (2.4) has a purely imaginary root. Thus it will now be sufficient, as in [I], for our proof of Theorem 1 or Theorem 2 with ψ subject to (I.7) to establish merely that there is fixed constant $\mathrm{D}>0$, whose magnitude is independent of μ, such that any ω-periodic solution $x(t)$ of (2.1) or (2.2), corresponding to $0<\mu<1$ satisfies:

$$
\begin{equation*}
|x(t)| \leq \mathrm{D},|\dot{x}(t)| \leq \mathrm{D} \quad \text { and } \quad|\ddot{x}(t)| \leq \mathrm{D} \quad(\tau \leq t \leq \tau+\omega) \tag{2.5}
\end{equation*}
$$

for some τ.
3. Notation. Let $\mathrm{A}_{3} \equiv \max _{0 \leq t \leq \omega}|p(t)|$. In what follows here the capitals $\mathrm{D}, \mathrm{D}_{0}, \mathrm{D}_{1} \cdots$ are finite positive constants whose magnitudes are independent of the parameter μ and, indeed, in the context of Theorem I depend only on $c_{1}, \mathrm{~A}_{3}, \mathrm{~B}_{2}, \phi, \psi$ and f, and, in the context of Theorem 2 , on $c_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{2}$, ϕ, ψ and f. The D's without suffixes attached are not necessarily the same in each place of occurrence but the numbered D^{\prime} 's: D_{0}, D_{1}, \cdots retain a fixed identity throughout.
4. Some preliminary results. As we shall be dealing extensively here with integrals such as $\int x^{2} \mathrm{~d} t, \int \dot{x}^{2} \mathrm{~d} t, \int \ddot{x}^{2} \mathrm{~d} t$ taken over time intervals of $\underset{\tau+\omega}{\tau_{0}+\omega}$ length ω, we might as well note that if x is ω-periodic the $\int_{\omega}^{\tau+\omega} x^{2} \mathrm{~d} t=\int_{\tau_{0}}^{\tau_{0}+\omega} x^{2} \mathrm{~d} t$ for arbitrary τ and τ_{0}, since either integral equals $\int_{\tau}^{\omega} x^{2} \mathrm{~d} t$ if x is ω-periodic. The same is true of $\int_{\tau}^{\tau+\omega} \dot{x}^{2} \mathrm{~d} t$ and $\int_{\tau}^{\tau+\omega} \ddot{x}^{2} \mathrm{~d} t$.

We shall require specially the use of the following two subsidiary results:
Lemma I . If $x=x(t)$ is continuous and ω-periodic in t then

$$
\begin{equation*}
\int_{\tau}^{\tau+\omega} \dot{x}^{2} \mathrm{~d} t \leq \frac{\mathrm{I}}{4} \omega^{2} \pi^{-2} \int_{\tau}^{\tau+\omega} \ddot{x}^{2} \mathrm{~d} t . \tag{4.I}
\end{equation*}
$$

Proof of Lemma. Let x have the Fourier expansion:

$$
\begin{equation*}
x \sim \sum_{r=0}^{\infty}\left(a_{r} \cos 2 \pi \omega^{-1} r t+b_{r} \sin 2 \pi \omega^{-1} r t\right) \tag{4.2}
\end{equation*}
$$

so that \dot{x} and \ddot{x} in turn have the corresponding expansions:

$$
\begin{aligned}
& \dot{x} \sim 2 \pi \omega^{-1} \sum_{r=1}^{\infty}-r\left\{a_{r} \sin \left(2 \pi \omega^{-1} r t\right)-b_{r} \cos \left(2 \pi \omega^{-1} r t\right)\right\} \\
& \ddot{x} \sim 4 \pi^{2} \omega^{-2} \sum_{r=1}^{\infty} r^{2}\left\{a_{r} \cos \left(2 \pi \omega^{-1} r t\right)+b_{r} \sin \left(2 \pi \omega^{-1} r t\right)\right\} .
\end{aligned}
$$

We have, in the usual manner, from the expansion for \dot{x} that

$$
\begin{equation*}
\int_{\tau}^{\tau+\omega} \dot{x}^{2} \mathrm{~d} t=2 \pi^{2} \omega^{-1} \sum_{r=1}^{\infty} r^{2}\left(a_{r}^{2}+b_{r}^{2}\right) \tag{4.3}
\end{equation*}
$$

and from the expansion for \ddot{x} that

$$
\begin{aligned}
\int_{\tau}^{\tau+\omega} \ddot{x}^{2} \mathrm{~d} t & =8 \pi^{4} \omega^{-3} \sum_{r=1}^{\infty} r^{4}\left(a_{r}^{2}+b_{r}^{2}\right) \\
& \geq 8 \pi^{4} \omega^{-3} \sum_{r=1}^{\infty} r^{2}\left(a_{r}^{2}+b_{r}^{2}\right) \\
& \geq 4 \pi^{2} \omega^{-2} \int_{\tau}^{\tau+\omega} \dot{x}^{2} \mathrm{~d} t
\end{aligned}
$$

by (4.3), which proves (4.1).
Lemma 2. Let $x=x(t)$ be an ω-periodic solution of (2.1) or of (2.2) corresponding to $0<\mu<\mathrm{I}$. Then

$$
\begin{equation*}
\int_{\tau}^{\tau+\omega} x^{2} \mathrm{~d} t \leq \mathrm{D}_{0}^{2}+\mathrm{D}_{1}^{2} \int_{\tau}^{\tau+\omega} \dot{x}^{2} \mathrm{~d} t \tag{4.4}
\end{equation*}
$$

for some $\mathrm{D}_{0}, \mathrm{D}_{\mathbf{1}}$.
Proof of Lemma. Let x have the Fourier expansion (4.2) so that then

$$
\begin{equation*}
\int_{\tau}^{\tau+\omega} x^{2} \mathrm{~d} t=a_{0}^{2}+\sum_{r=1}^{\infty}\left(a_{r}^{2}+b_{r}^{2}\right) \tag{4.5}
\end{equation*}
$$

whether or not x is a solution of (2.1) or of (2.2).

If in particular $x(t)$ is a solution of (2.1) or of (2.2) then we have, in view of (1.6) on integrating (2.1), (2.2) that

$$
\begin{equation*}
\int_{0}^{\omega}\left\{(\mathrm{I}-\mu) c_{i} x+\mu f(x)\right\} \mathrm{d} t=0 \quad(i=\mathrm{I}, 2) \tag{4.6}
\end{equation*}
$$

Since $c_{i}>0(i=1,2)$ and f is subject to (1.5) it is clear from (4.6) with $0<\mu<1$ that
(4.7) $\quad\left|x\left(\tau_{0}\right)\right|<1 \quad$ for some τ_{0} such that $0 \leq \tau_{0} \leq \omega$.

Now the coefficient a_{0} in (4.2) is given by

$$
\begin{aligned}
a_{0} & =\omega^{-1} \int_{0}^{\omega} x(t) \mathrm{d} t \\
& =\omega^{-1} \int_{\tau_{0}}^{\tau_{0}+\omega} x(t) \mathrm{d} t
\end{aligned}
$$

since $x(t)$ is ω-periodic in t. Now

$$
\begin{aligned}
\int_{\tau_{0}}^{\tau_{0}+\omega} x(t) \mathrm{d} t & =[t x(t)]_{\tau_{0}}^{\tau_{0}+\omega}-\int_{\tau_{0}}^{\tau_{0}+\omega} t \dot{x}(t) \mathrm{d} t \\
& =\omega x\left(\tau_{0}\right)-\int_{\tau_{0}}^{\tau_{0}+\omega} t \dot{x}(t) \mathrm{d} t
\end{aligned}
$$

so that, by (4.7),

$$
\left|a_{0}\right|<\mathrm{I}+\omega^{-1} \int_{\tau_{0}}^{\tau_{0}+\omega} t|\dot{x}(t)| \mathrm{d} t
$$

and therefore, since $o \leq \tau_{0} \leq \omega$,

$$
\begin{aligned}
\left|a_{0}\right| & \leq \mathrm{I}+\mathrm{D} \int_{\tau_{0}}^{\tau_{0}+\omega}|\dot{x}(t)| \mathrm{d} t \\
& \leq \mathrm{I}+\mathrm{D}\left(\int_{\tau_{0}}^{\tau_{0}+\omega} \dot{x}^{2} \mathrm{~d} t\right)^{\frac{1}{2}}
\end{aligned}
$$

by Schwarz's inequality. Hence

$$
\begin{equation*}
a_{0}^{2} \leq \mathrm{D}_{2}\left(\mathrm{I}+\int_{\tau_{0}}^{\tau_{0}+\omega} \dot{x}^{2} \mathrm{~d} t\right) \tag{4.8}
\end{equation*}
$$

for sufficiently large D_{2}. As for the term under the summation sign in (4.5) it is clear by comparison with (4.3) that

$$
\begin{equation*}
\sum_{r=1}^{\infty}\left(a_{r}^{2}+b_{r}^{2}\right) \leq \mathrm{D} \int_{\tau}^{\tau+\omega} \dot{x}^{2} \mathrm{~d} t \tag{4.9}
\end{equation*}
$$

The result (4.4) now follows on combining (4.8) and (4.9) with (4.5).
5. Proof of Theorem i. Let now $x=x(t)$ be any ω-periodic solution of (2.I) with $0<\mu<1$ and ϕ subject to (I.3).

Define $\mathrm{I}_{0} \geq 0, \mathrm{I}_{1} \geq 0, \mathrm{I}_{2} \geq 0$ by:

$$
\mathrm{I}_{0}^{2}=\int_{0}^{\omega} x^{2} \mathrm{~d} t \quad, \quad \mathrm{I}_{1}^{2}=\int_{0}^{\omega} \dot{x}^{2} \mathrm{~d} t \quad, \quad \mathrm{I}_{2}^{2}=\int_{0}^{\omega} \ddot{x}^{2} \mathrm{~d} t
$$

Since

$$
\int \dot{x} \ddot{x} \mathrm{~d} t=\dot{x} \ddot{x}-\int \ddot{x}^{2} \mathrm{~d} t \quad \text { and } \quad \int \phi(x) \dot{x}^{2} \mathrm{~d} t=\dot{x} \Phi(x)-\int \ddot{x} \Phi(x) \mathrm{d} t
$$

we have, on multiplying (2.1) by \dot{x} and integrating, that

$$
\mathrm{I}_{2}^{2}+\mu \int_{0}^{\omega} \Phi(x) \ddot{x} \mathrm{~d} t=-\mu \int_{0}^{\omega} \dot{x} p(t) \mathrm{d} t,
$$

so that, by (1.3) and since $0<\mu<\mathrm{I}$,

$$
\begin{align*}
\mathrm{I}_{2}^{2} & \leq \mathrm{B}_{1} \int_{0}^{\omega}|x||\ddot{x}| \mathrm{d} t+\left\{\mathrm{B}_{2} \int_{0}^{\omega}|\ddot{x}| \mathrm{d} t+\mathrm{A}_{3} \int_{0}^{\omega}|\dot{x}| \mathrm{d} t\right\} \tag{5.1}\\
& \leq \mathrm{B}_{1} \mathrm{I}_{\mathrm{a}} \mathrm{I}_{2}+\omega^{\frac{1}{2}}\left(\mathrm{~B}_{2} \mathrm{I}_{2}+\mathrm{A}_{3} \mathrm{I}_{1}\right),
\end{align*}
$$

by Schwarz's inequality. But, by (4.4),

$$
\begin{align*}
\mathrm{I}_{0} & \leq \mathrm{D}_{0}+\mathrm{D}_{1} \mathrm{I}_{1} \tag{5.2}\\
& \leq \mathrm{D}_{3}\left(\mathrm{I}+\mathrm{I}_{2}\right)
\end{align*}
$$

by (4.I), for sufficiently large D_{3}. Thus (5.1) also implies that

$$
\mathrm{I}_{2}^{2} \leq \mathrm{D}_{3} \mathrm{~B}_{1} \mathrm{I}_{2}^{2}+\left(\mathrm{B}_{1} \mathrm{D}_{3}+\mathrm{D}\right) \mathrm{I}_{2}
$$

by (4.1); and hence if B_{1} is fixed, as we assume henceforth, such that

$$
\begin{equation*}
\mathrm{B}_{1} \leq \frac{1}{2} \mathrm{D}_{3}^{-1} \tag{5.3}
\end{equation*}
$$

then

$$
\mathrm{I}_{2}^{2} \leq \mathrm{DI}_{2}
$$

from which it follows at once that

$$
\begin{equation*}
\mathrm{I}_{2}^{2} \leq \mathrm{D}_{4} \tag{5.4}
\end{equation*}
$$

and then also, by (4.1), that

$$
\begin{equation*}
\mathrm{I}_{1}^{2} \leq \mathrm{D}_{5} \tag{5.5}
\end{equation*}
$$

Now a combination of (4.7) with the identity:

$$
x(t) \equiv x\left(\tau_{0}\right)+\int_{\tau_{0}}^{t} \dot{x}(s) \mathrm{d} s
$$

shows that

$$
\begin{aligned}
\max _{0 \leq t \leq \omega}|x(t)| & <\mathrm{I}+\int_{\tau_{0}}^{\tau_{0}+\omega}|\dot{x}(s)| \mathrm{d} s \\
& \leq \mathrm{I}+\omega^{\frac{1}{2}}\left(\int_{\tau_{0}}^{\tau_{0}+\omega} \dot{x}^{2}(s) \mathrm{d} s\right)^{\frac{1}{2}}
\end{aligned}
$$

by Schwarz's inequality. Hence, by (5.5),

$$
|x(t)| \leq \mathrm{D}_{6} \equiv \mathrm{I}+\omega^{\frac{1}{2}} \mathrm{D}_{5}^{\frac{1}{5}} \quad(0 \leq t \leq \omega)
$$

Next, since $x(0)=x(\omega)$ it is clear that $\dot{x}\left(\tau_{1}\right)=\mathrm{o}$ for some $\tau_{1} \in[\mathrm{o}, \omega]$. Thus we have, as a result of the identity:

$$
\dot{x}(t)=\dot{x}\left(\tau_{1}\right)+\int_{\tau_{1}}^{t} \ddot{x}(s) \mathrm{d} s,
$$

that

$$
\begin{aligned}
\max _{0 \leq t \leq \omega}|\dot{x}(t)| & \leq \int_{\tau_{1}}^{\tau_{1}+\omega}|\ddot{x}(s)| \mathrm{d} s \\
& \leq \omega^{\frac{1}{2}}\left(\int_{\tau_{1}}^{\tau_{1}+\omega} \ddot{x}^{2}(s) \mathrm{d} s\right)^{\frac{1}{2}},
\end{aligned}
$$

by Schwarz's inequality, and therefore, by (5.4), that

$$
\begin{equation*}
|\dot{x}(t)| \leq \mathrm{D}_{7} \equiv \omega^{\frac{1}{2}} \mathrm{D}_{4}^{\frac{1}{4}} \tag{5.7}
\end{equation*}
$$

$$
(\mathrm{o} \leq t \leq \omega)
$$

It remains now to establish the last estimate in (2.5). For this let us note from (2.1) that $\ddot{x}=Q$, where by virtue of (5.6) and (5.7) and the boundedness of p the function Q satisfies

$$
|Q| \leq \mathrm{D}_{8}(|\vec{x}|+\mathrm{I}) .
$$

Thus if we multiply both sides of (2.I) by \bar{x} and integrate we shall obtain that

$$
\begin{aligned}
\int_{\tau}^{\tau+\omega} \ddot{x}^{2} \mathrm{~d} t & \leq \mathrm{D}_{8} \int_{\tau}^{\tau+\omega}|\ddot{x}||\bar{x}| \mathrm{d} t+\mathrm{D}_{8} \int_{\tau}^{\tau+\omega}|\bar{x}| \mathrm{d} t \\
& \leq \mathrm{D}\left(\int_{\tau}^{\tau+\omega} \ddot{x}^{2} \mathrm{~d} t\right)^{\frac{1}{2}}\left(\int_{\tau}^{\tau+\omega} \ddot{x}^{2} \mathrm{~d} t\right)^{\frac{1}{2}}+\mathrm{D}\left(\int_{\tau}^{\tau+\omega} \ddot{x}^{2} \mathrm{~d} t\right)^{\frac{1}{2}}
\end{aligned}
$$

by Schwarz's inequality. Hence, by (5.4),

$$
\int_{\tau}^{\tau+\omega} \ddot{x}^{2} \mathrm{~d} t \leq \mathrm{D}\left(\int_{\tau}^{\tau+\omega} \ddot{x}^{2} \mathrm{~d} t\right)^{\frac{1}{2}}
$$

which in turn implies that

$$
\begin{equation*}
\int_{\tau}^{\tau+\omega} \check{x}^{2} \mathrm{~d} t \leq \mathrm{D}_{\mathbf{9}} \tag{5.8}
\end{equation*}
$$

Now, since $\dot{x}(0)=\dot{x}(\omega)$ it follows that $\ddot{x}\left(\tau_{2}\right)=\mathrm{o}$ for some $\tau_{2} \in[\mathrm{o}, \omega]$. Therefore we have, from the identity:

$$
\ddot{x}(t)=\ddot{x}\left(\tau_{2}\right)+\int_{\tau_{2}}^{t} \ddot{x}(s) \mathrm{d} s,
$$

that

$$
\max _{0 \leq t \leq \omega}|\ddot{x}(t)| \leq \omega^{\frac{1}{2}}\left(\int_{\tau_{2}}^{\tau_{2}+\omega} \ddot{x}^{2}(s) \mathrm{d} s\right)^{\frac{1}{2}} \leq \mathrm{D}
$$

by (5.8).
This completes the verification of (2.5) for all ω-periodic solutions of (2.1) with $0<\mu<I$ and Theorem I now follows with $\varepsilon_{0}=\frac{1}{2} D_{3}^{-1}$ (See (5.3)).
6. Proof of Theorem 2. We deal first with the case ψ subject to (1.7). Let then $x=x(t)$ be any ω-periodic solution of (2.2) with $0<\mu<\mathrm{I}$. The whole substance of our proof, as pointed out in § 2 will be to establish (2.5) for $x(t)$. With the groundwork laid out in § 4 the pattern for the proof of (2.5) here is almost as in $\S 5$ and we shall therefore skip any inessential details.

Indeed the main difference between our procedure here and the procedure in $\S 5$ is in the method for estimating $\int_{0}^{\omega} \dot{x}^{2} \mathrm{~d} t$. This time it is convenient
to multiply our parameter-dependent equation (2.2) by x (not by \dot{x} as in §5) and then integrate. Since

$$
\begin{gathered}
\int x \ddot{x} \mathrm{~d} t=x \ddot{x}-\frac{1}{2} \dot{x}^{2} \quad, \quad \int x \ddot{x} \mathrm{~d} t=x \dot{x}-\int \dot{x}^{2} \mathrm{~d} t \\
\frac{\mathrm{~d}}{\mathrm{~d} t} \int_{0}^{x} \xi \phi(\xi) \mathrm{d} \xi=x \phi(x) \dot{x} \quad, \quad \int x \Psi(\dot{x}) \ddot{x} \mathrm{~d} t=x \Psi(\dot{x})-\int \dot{x} \Psi(\dot{x}) \mathrm{d} t
\end{gathered}
$$

where $\Psi(y) \equiv \int_{0}^{y} \psi(\eta) \mathrm{d} \eta$, and x is ω-periodic, the integration leads at once to the result:
(6.1) $\quad(\mathrm{I}-\mu) \alpha \int_{0}^{\omega} \dot{x}^{2} \mathrm{~d} t+\mu \int_{0}^{\omega} \dot{x} \Psi(\dot{x}) \mathrm{d} t=\int_{0}^{\omega}\left\{(\mathrm{I}-\mu) c_{2} x^{2}+\mu x f(x)-\mu x p\right\} \mathrm{d} t$.

By (I.7) $\psi \geq \alpha$ and therefore also $y \Psi^{\prime}(y) \geq \alpha y^{2}$ for all y.
Thus the inequality (6.I), if (I.2) holds, implies that

$$
\begin{align*}
\int_{0}^{\omega} \dot{x}^{2} \mathrm{~d} t & \leq \alpha^{-1}\left(c_{2}+\mathrm{A}_{1}\right) \int_{0}^{\omega} x^{2} \mathrm{~d} t+\mathrm{D} \int_{0}^{\omega}|x| \mathrm{d} t \tag{6.2}\\
& \leq \alpha^{-1}\left(c_{2}+\mathrm{A}_{1}\right) \int_{0}^{\omega} x^{2} \mathrm{~d} t+\mathrm{D}\left(\int_{0}^{\omega} x^{2} \mathrm{~d} t\right)^{\frac{1}{2}}
\end{align*}
$$

by Schwarz's inequality. By (4.4) and (5.2) this implies in turn that

$$
\begin{equation*}
\int_{0}^{\omega} \dot{x}^{2} \mathrm{~d} t \leq \alpha^{-1}\left(c_{2}+\mathrm{A}_{1}\right) \mathrm{D}_{1}^{2} \int_{0}^{\omega} \dot{x}^{2} \mathrm{~d} t+\mathrm{D}\left\{\left(\int_{0}^{\infty} \dot{x}^{2} \mathrm{~d} t\right)^{\frac{1}{2}}+\mathrm{A}_{1}+\mathrm{I}\right\} . \tag{6.3}
\end{equation*}
$$

Hence if for example c_{2} and A_{1} are fixed, as we assume henceforth, such that

$$
\begin{equation*}
0<c_{2}<\frac{\mathrm{I}}{4} \alpha \mathrm{D}_{1}^{-2} \quad, \quad \mathrm{~A}_{1} \leq \frac{\mathrm{I}}{4} \alpha \mathrm{D}_{1}^{-2} \tag{6.4}
\end{equation*}
$$

then we have from (6.3) that

$$
\int_{0}^{\infty} \dot{x}^{2} \mathrm{~d} t \leq \mathrm{D}\left\{\left(\int_{0}^{\infty} \dot{x}^{2} \mathrm{~d} t\right)^{\frac{1}{2}}+\mathrm{I}\right\}
$$

which, in turn leads to (5.5) and therefore to (5.6) as in $\S 5$.

It remains now to obtain the estimates for $|\dot{x}(t)|$ and $|\ddot{x}(t)|$ in (2.5).
The estimate for $|\dot{x}(t)|$ requires (5.4), just as in $\S 5$, and to establish this we note that (2.2) implies that

$$
\begin{equation*}
\bar{x}+\{(\mathrm{I}-\mu) \alpha+\mu \psi(\dot{x})\} \ddot{x}=\mathrm{R} \tag{6.5}
\end{equation*}
$$

where, because of the boundedness, just established, of $|x(t)|$ by a D , the function R satisfies

$$
|\mathrm{R}| \leq \mathrm{D}(|\dot{x}|+\mathrm{I}) .
$$

Thus if we multiply both sides of (6.5) by \ddot{x} and integrate we shall have, since x is ω-periodic and $(\mathrm{I}-\mu) \alpha+\mu \psi \geq \alpha$, that

$$
\begin{aligned}
\alpha \int_{0}^{\omega} \ddot{x}^{2} \mathrm{~d} t & \leq \mathrm{D}\left(\int_{0}^{\omega}|\dot{x}||\ddot{x}| \mathrm{d} t+\int_{0}^{\omega}|\ddot{x}| \mathrm{d} t\right) \\
& \leq\left\{\left(\int_{0}^{\omega} \dot{x}^{2} \mathrm{~d} t\right)^{\frac{1}{2}}\left(\int_{0}^{\omega} \ddot{x}^{2} \mathrm{~d} t\right)^{\frac{1}{2}}+\left(\int_{0}^{\omega} \ddot{x}^{2} \mathrm{~d} t\right)^{\frac{1}{2}}\right\} \\
& \leq \mathrm{D}\left(\int_{0}^{\omega} \ddot{x}^{2} \mathrm{~d} t\right)^{\frac{1}{2}}
\end{aligned}
$$

by (5.6) which has just been established for ω-periodic solutions of (2.2). Hence

$$
\int_{0}^{\omega} \ddot{x}^{2} \mathrm{~d} t \leq \mathrm{D}
$$

as before and the estimate (5.7) then follows as in $\S 5$ for our solution x of (2.2).
With the boundedness (each by a D) of $|x(t)|$ and $|\dot{x}(t)|$ established, the estimate (5.8.) can now follow, for our solution of (2.2) exactly as in $\S 5$, and so also the boundedness of $|\ddot{x}(t)|$ by a D for orbitrary $t \in[0, \omega]$. This concludes the verification of Theorem 2 with $\varepsilon_{1}=\frac{I}{4} \alpha D_{1}^{-2}$ (see (6.4)) when ψ is subject to (1.7).

To tackle the case ψ subject to (I .8) we had pointed out in $\S 2$ that we should deal with the equation (2.2) with α replaced by ($-\beta$). The effect of the replacement on the estimate for $\int_{0}^{\infty} \dot{x}^{2} \mathrm{~d} t$ is merely to replace α^{-1} in (6.2) by β^{-1}, as is easily seen by multiplying both sides of (6.1) by (-I) and noting
that $-\mu y \Psi(y) \geq \mu \beta y^{2}$ so that then

$$
(\mathrm{I}-\mu) \beta \int_{0}^{\omega} \dot{x}^{2} \mathrm{~d} t-\mu \int_{0}^{\omega} \dot{x} \Psi(\dot{x}) \mathrm{d} t \geq \beta \int_{0}^{\omega} \dot{x}^{2} \mathrm{~d} t
$$

Thus the estimate (6.3) comes through here with β in place of α and the rest of the proof when ψ is subject to (I.8) can now follow from that point exactly as before.

This completes our proof of Theorem 2.

References

[i] R. Reissig (1972) - «Ann. Mat. Pura Appl.», 92, 193-198.
[2] R. Reissic (1972) - "Ann. Mat. Pura Appl.», 92, 199-209.
[3] J. O. C. Ezeilo (1960) - "Proc. Cambridge Philos Soc.», 56. 38ı-389.
[4] H. Sedizwy (1965) - "Ann. Pol. Math.», I7, I47-1 54.

