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Analisi matematica. — Linear stochastic differential equations in
Hildert spaces ™. Nota di Givseppe Da Prato, MimMmo IANNELLI
e Lucrano Tusaro, presentata ¢ dal Corrisp. G. STAMPACCHIA.

RIASSUNTO. — Si studiano risultati di esistenza e regolaritd delle traiettorie per la solu-
zione di equazioni differenziali stacastiche lineari in uno spazio di Hilbert.

1. INTRODUCTION

Let (Q,&,P) be a probability space, w,, e [0, T] be a real Wiener
process in it. Let &%, be a family of c-algebras non anticipating with respect
to w,. Let H be a Hilbert space and A:Dy —H ; B:Dg — H two linear
operators in H.

We want to study the following equation:

® wO=wt @ s+ [Bu) +g ) du,

where A is the infinitesimal generator of a ¢,-semigroup.

By the use of the properties of the Ité integral and by the usual methods
of the contraction principle, we prove the existence of a solution to (1) in
the space C (o, T ; L*(Q, H)), (see [2]).

On the other hand by regularity results (see [3]) for abstract differential
equations together with the continuity properties of the It6 integral we also
prove continuity and Hélder continuity of trajectories of the solutions.

The interest of this latter result is also concerned with the study of
the existence of a maximal solution for semi-linear abstract stochastic diffe-
rential equations, by methods similar to those used in [4].

This latter kind of equations will be studied in a forthcoming paper.

The results of this paper are stated in section 3, while section 2 is
devoted to a preliminar study of the properties of the process:

t

”

(2) X (@) = | exp (¢ —9) A) g (5) duw,.

0

(*) Work supported by G.N.A.F.A. (Consiglio Nazionale delle Ricerche).
(*¥*) Nella seduta del 14 gennaio 1978,
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2. THE PROPERTIES OF X

By first we define, as usual, the following space:

M, = {the set of all measurable processes # in [0, T] with values
‘ T
in H, adapted to the family & and such that f E|ulpds < -+ oo}
then we put: H
(3) Z(©,T;H)=C(,T;L*(Q,H)NM,

Z (0o, T;H)is a closed subspace of C (o, T ; L2 (Q, H)) with the usual norm:
lll) = sup (E |u]?)
0<I<T
so that we endowe Z with this norm. Yet by Z (o, T ; Da) we denote those
processes z€Z (o,T;H) such that €D, and AzeZ (0, T;H). For
g€Z(0,T;H)Y(Z (o, T;Dy,)) the integral in (2) makes a sense for 7€ [0, T],

so that the process X is defined. We want to investigate the properties of
X under various assumptions on A and g. Firstly we have:

PROPOSITION I. Let A be the infinitesimal generator of a cy-semigroup
on H, then:

@) ge€Z (0, T ;H)@resp. Z(0,T;Dy)=XeZ(,T;H)
(resp. Z (0, T ; Dyp)) .
Proof. Let A, =n*R (n,A)—n=AR (n,A)n be the Yosida appro-

ximation for A, put:
t

) X0 = [ exp (¢ — 9 ADg () dw,

0

X, is the unique solution of the stochastic equation:
t t
©® X = [An X0 @ s + [ £6) oy
0 0
as it can be easily verified, observing that

X, (&) = exp (#A,) f exp (— sA,) g (s) dw, .
0

Moreover it is

@) vt X, (&) - X (@) in probability,
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in fact V¢e Jo,T] and we Q:
exp (¢ —5) A g () ~exp (¢t —9M)g(s) in L*(o,#;H)

(7) implies that X is a measurable process, adapted to the family &,. On
the other hand
T T ¢

fE]X@Pds:fEUexp (t —5)A) g (s) daw, | dt =

¢
1)

T ¢ T :
(
:fdz‘fE]exp((z‘——s)A)g(S}Izds < M2 {dz‘fE lg OHPFds < 4 o0
o o o 0
so that Xe M,. Finally it is:

BIX O — X @ = B| [ exp (¢—5) A)g () duo +

1 [[exp (=9 M) —exp @0 — 9 AN g () do, | <

<20 [l Fds +2 [ exp (0 — ) &) —

— (exp (ta— ) AN g )P ds —o0

as ¢ —~#, so that XeC (o, T;L*(Q, H)). o
All this means that XeZ (o, T;H). If now geZ (o, T;D,) it is
4

AX () = f exp (¢! —s)A) Ag (s)dw, and in the same way as before we

[
can prove that XeZ (o, T ; Da).

The previous proposition does not give any information on the conti-
nuity of the process X. To get this kind of results we need stronger hypo-
theses either on A or on g.

First of all we remark the following equality:

® X, =Y () + A [ exp @) A ¥ (5) ds

where X, is defined in (5) and ¥y (¥) =fg (s) dw,.
V]
A | )

(1) M= sup |¢
0<t<T



G. DA PRATO e ALTRI, Linear stochastic differential equations, ecc. 25

Indeed it can be easily proved that the right hand side of (8) is the
unique solution of (6). Then we have:

PROPOSITION 2. Let A be the infinitesimal generator of a cy-group then:

g€Z (0, T;H) =X s continuwous in H

g€Z (0, T ;D) = X is a-Holder continuous in H (o <) and continumous
in Da. :

Proof. The proof easily follows from the properties of the It6 integral,
as it is:
!
©) XO = [ ds.

0
In the general case for A it is necessary to suppose g regular:

PRrROPOSITION 3. Let g€ Z (0, T ;D4 then X is an a-Holder continmuouns
process in H (o < ¥).
t
Progf. Owing to the hypotheses v () = J g()dsisin Dy and Ay (¥) =

0

t
= ng (s) ds. Going to the limit in (8) (see (7)) we get:
0

(10) XO =70+ [ exp @9 Ay (@ ds.

Now the processes y and Ay are Hélder continuous in H ®, moreover
by a standard result (see [3]) the second term on the right hand side of (10)
is also a Holder continuous process. Thus (6) is proved.

Finally we have:

PROPOSITION 4. Let A be the infinitesimal generator of an.analytic semi-
group on H; then.

g€Z (0, T;H) =X is an a-Holder continuous (o < %) process in H.

Proof. In this case as the process y is a-Halder continuous (« < 3) in
H, by a result in [3] it follows that the process

t—>fexp ((t—s)A)y (s)ds

(2) This is a well-known fact, see for istance [5].
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is a-Holder continuous (¢ < %) in Da and moreover it is
¢ t
A fep @981 a5 A [ ep =9 DTG s,
L\ 0
so that going to the limit in (8) we have

XO =70 +A[ep@—9my©ds

and X is «-Hblder continuous (« < %) in H.

Remark. Under the assumptions of Proposition 4 actually it can be
proved that Xe Z (0o, T ; Da); the proof of this fact is perfectly similar to
that of Proposition I.

3. LINEAR STOCHASTIC DIFFERENTIAL EQUATIONS

We now study the stochastic differential equation (1) in the following
generalized formu: :

(11) % () = exp (#A) u, —1—fexp ((@—HA)f(s)ds +

T [ exp @9 ) Bu (9 +£ () de,.

(11) is equivalent to (1) when Ae % (H).

PROPOSITION 4. Let A be the infinitesimal gemerator of a cy-semi-group
on H,BeZ M), f,geZ (o, T;H),u,cl?(Q,H), Fymeasurable. Then
(17) kas a wnigque solution weZ (o, T ;H). Moreover it is:

(12) f,8€Z(0,T;Dy),B Dy c Da,nuye L2(Q,Dy)
= u is a solution of (f) .
(13) A is the infinitesimal gemerator of a cy-group on H
= u is a continuous process in H.
(14) A is the infinitesimal generators of an analytic semigroup in H
#y€ L2 (Q, Do), e (0, D

= u is a-Holder continuous process in H®,

(3) If 4y €11 (Q, H) then # is Holder continuous only for # ¢ (o, T].
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Proof. Put:
(1) v (t) = exp (tA) o + f exp (2 — ) A)/ (5) ds +
-+ f exp ((£—5) A) g (s) dw,
(16) 2w — ¢ (u) = Jexp (¢ — ) A) Bu (s) dw, .

0
By the Proposition 1 veZ (0o, T;H) and $:Z(0,T;H)—~Z (o, T;H),
then (11) can be written as the following equation in Z (o, T ; H):
(17) =6 @) t+uv.
Now ¢ is a linear mapping such that

6 @)IF < TM?|BP||a|P

so that by the standard argument of contraction principle, by the existence
of a unique solution in Z (0, T ; H) follows. To prove (12) we first remark
that with the assumptions in (12) the same argument used before can be
used to show the existence of a solution z€ Z (0, T ; Da), then putting:

t
0 = exp (A g+ [ exp (1~ )A)S () ds +
. 0
T | exp (¢ 5) A) (Bue(5) + £ () d
0
it is vze [0, T]
Uy —> % in L?(Q,H)
Av, — Aun in L?(Q; H)
and

= ot [ Buen ) 476 ds + [ Bu ) +56) e

so that (1) follows going to the limit. Finally (13) and (14) follow directly
from Propositions 2 and 3.

The previous existence result can be extended to the case of B unbounded,
assuming that Dse = Dg. To do this it is necessary to state the following
proposition whose proof is quite similar to that of Proposition 1.

(4) It is sufficient to recall the following estimate

|Bexp (1A)| < K |BA* A1  s>o0.
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PROPOSITION 5. Let A be the infinitesimal generator of an analytic semi-
group and B : Dg— H be such that Das< Dy (8c] 0, L), then if ge Z (0, T; H)

then the process
4

Y () = f B exp (t — ) A) g () ds

is in Z (o, T ; H).
Then we have:

PROPOSITION 6. Let A be the infinitesimal generator of an analytic semi-
group and B an invertible operator suck that Do < Dy for some 6€]o, %[
If figcZ©,T;H) and uye L2 (Q,Dr0) is Fprmeasurable then (11) has
a unique solution we Z (o, T ;H). Moreover u is an o-Holder continnous
process (o < %) in H.

Proof. Consider the following equation in Z (o, T ; H):

v (£) = B exp (?A) u, +fB exp (¢ — ) A)f(s)ds +
(18) y
—I—fBexp (¢ — ) A)v(s) dew,.
0

By Proposition g, proceeding as in Proposition 4 it can be showed the exi-
stence of a unique solution ve Z (o, T ; H) of (18).

Then # = B-*ve Z (0, T ; Dg) is the solution of (11) and by Proposi-
tion 4 is an o-Holder continuous process in H.

Remark 2. The assumptions on B in Proposition 5 seem to be rather
strong, actually if the domains of A and B are not comparable there is not
existence in general. A typical case is equation (1) with A = 0. Indeed
if B is hermitian and bounded it is easy to prove that:

(19) % (#) = exp (Bw (¢) — B%¢/2)

if B is unbounded then any solution must be of the form (19), but in
order to (19) be meaningful for every u, it is necessary that either B be
the infinitesimal generator of a c¢y-group, either — B2 be a generator of a ¢,
semigroup.

This is, in general, impossible by a simple argument on the spectrum
of B.

Remark 3. Propositions 4 and 6 have been proved assuming #,e L?(Q, H)
or #4€ L2 (Q2,Dp0) and f, ge Z (0, T ; H).

The results are still true when #%, is only #,measurable (with values
in H or D e respectively) and f, g continuous processes in M,. The proof
of this can be carried through as in [4], Theorem 4. :
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