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RENDICONTI
DELLE SEDUTE

DELLA ACCADEMIA NAZIONALE DEI LINCEI

Classe di Scienze fìsiche, matematiche e naturali

Seduta del 14 gennaio i ç j 8  

Presiede i l  Presidente della Classe A ntonio Carrelli

SEZIONE I
(Matematica, meccanica, astronomia, geodesia e geofisica)

Algebra. — Correspondence between the class o f left nonassocia- 
twe C-nngs and a class o f loops. Nota di M i r e l a  S t e f a n e s c u ,  pre­
sentata <*> dal Socio G. Z ap p a .

R ia s s u n t o .  — Estendendo risultati precedenti di Malcev, di Weston e dell’autrice, 
si dimostra che esiste una corrispondenza tra la classe dei C-anelli non associativi sinistri e 
una classe di cappi. Tale corrispondenza è anche un’equivalenza tra le teorie formalizzate 
di dette classi.

There is a correspondence between the class of nonassociative rings and 
a class of nilpotent groups, which is also an equivalence between their forma­
lized theories. K. Weston [10] constructed it, generalizing an idea of Mal’cev 
[5] for the class of nonassociative rings with identity. We obtained a more 
general result, for a special class of distributive nonassociative near-rings 
(with x-y  +  z — z +  x-y, for all x , y) and a larger class of groups. This 
is the largest class of nonassociative near-rings which corresponds to a class 
of groups. We gave this result in [8], and proved there that the established 
correspondence is an equivalence between their formalized theories and bet­
ween the categories which have the above classes, as classes of objects, and 
the near-ring homomorphisms and, respectively, group homomorphisms, as 
morphisms.

The purpose of this paper is to construct a similar correspondence between 
the class of left nonassociative C-rings and a class of loops. We show also

(*) Nella seduta del 14 gennaio 1978.

1. — RENDICONTI 1978, vol. LXIV, fase. 1.
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that this is an equivalence between the formalized theories of these classes. 
The correspondences from [8], hence those from [5] and [10], as well as some 
other correspondences, are obtained from the one given here, as its restrictions.

I. D efin ition s  and notations

A left nonassociative near-ring is a triple (N , +  , •), such that (N , + )  
is a group, and • is left distributive over + . If o-x =  o for all i g N ,  
then N is called a left nonassociative C-ring [1, § 4 (b)]. If, in addition, 
(— x) -y = — for all x , y e  N, then we call N a strict (left nonasso dative) 
C-ring. N is called a distributive near-ring, if - is also right distributive 
over + . Obviously, a distributive near-ring is a strict C-ring, and, thus, a 
C-ring.

We use the following notations: fé'-the class of all left nonassociative 
C-rings; fé -̂its subclass made up of strict C-rings; ^-the subclass of fé\ made 
up of distributive near-rings; i^-the subclass of @ of distributive near-rings 
N in which x-y  +  z =  z +  x -y} for all x , y  e N.

Note that fé7, as the class of objects, together with the near-ring homor- 
phisms, as morphisms, forms a category, fé7, with fé\ , and Ö)x, as full 
subcategories.

An approach to the theory of near-rings can be found in [4]. For the
definitions and notations concerning loops, see Bruck [2]. We use here the
additive notation for the loop operation.

If (L , +  , o) is a loop, then the sets

Kx =  {a I ae  L , (a +  x) +  y =  a +  (x +  y) , Vx , y e L} ,

K  ̂ — {a J ae  L , (x f  - a) -j- y  =  x -f- (a T  y) , V# > y  g L} ,

Kp =  {a I a e L , (x +  y) a =  x f  (y f  a) , >f x , y  e L}

are nonempty sets (because of the existence of o) and they are called, respec­
tively, the left nucleus, the middle nucleus and the right nucleus of L (see 
[2, p. 57]). All of them are subgroups of L.

It is known that for an additive operator on a loop L , a : L -> L, (an 
endomorphism of L), a (o) =  o and Ker ol =  {x \x g L,9ol (x) =  0} is a normal 
subloop of L [2, p. 60].

Denote by Id? the class of loops satisfying the axioms (i)-(y):

(i) There exist two endomorphisms of L , a and ß, such that a°a =  
=  ß°ß — a°ß =  ß°a =  o (the null endomorphism of L).

(ii) Denote A =. Ker a =  {x | x e L , a (x) — 0} , B =  Ker ß =
=  {x I 6 L , ß (x) =  0} and H =  A D B. Then B <= Kp .
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Remark 1.1. A is a subloop of L, while B and H are subgroups of L. Indeed, for any 
a , b e A , the equations a -f- x  =  b and y  -J- a — b have unique solutions in A, since 
a (a +  x) =  a (b) , a (y +  a) =  oc (b) , a (a) =  a (b) =  o imply a (x) =  a (y) =  o. We use 
the same argument for B and H. Now, the inclusions H ç B ç K p and the fact that Kp is 
a subgroup imply that B and H are subgroups.

(iii) There exist two homorphisms oc : H B , ß : H -> A, such that 
(a°a) (x) =  (ßo ß) (x) =  x, for all x e  H.

Remark 1.2. Obviously, (aoß) (x) =  (ß°a) (x ) =  o, for all x e H .  From the definitions 
of à and H, it follows that a (H) C Kp and H C Kp.

(iv) p ( H ) ç K Àn K „ H c K À.

(v) H and a (H), as well as H and ß (H), permute elementwise.

Denote by x' the inverse of at, for any x e  H, hence x +  x' =  xr +  x =  o.
Denote by [x , y] the unique solution of the equation:

(x• 0  % +  y  =  (y  +  x) +  [x , y] , Vx , y e  L .

Lemma i.i.  Let LgJ^ and H ç  L. For any x , y e  H, the elements 
[à (x) , ß (y)] and [ß (y) , à (x)] are in H.

Proof. Denote [â (x) , ß (y)] by c. We have, indeed, ä (x) +  ß (y) =  (ß (y) +  ä (x)) +  c, 
and, by applying oc and ß, we obtain: a (c) =  ß (c) =  o, hence c d i  With a similar argument, 
we prove the second statement of the Lemma i . i .

Now, applying properties of à (x) and ß (y), for all x  , y  e H, given by axioms (iii)—(v) 
and Remarks i . i  and 1.2, we obtain two forms for [ä (x) , ß (y)], namely:

C1-2) [5 (x ) , ß (y)] =  (ä (x’) +  ß (y')) +  (ä (x) +  ß (y))

(: -3) [S (*), ß (y)] =  (ß (y’) +  & (x)) +  (ß (y) +  a (* ')) .

Indeed, frokn the equation ä (x) +  ß (y) =  (ß (y) +  S (x)) +  c , by adding ß ( y1), which 
belongs to Kx , to the left-hand side, we obtain: ß (y') +  (ä (x) +  ß (y)) =  ä (x) +  c (since 
ß is an additive operator). Now, by adding 5 (x") to the left-hand side of the obtained equation, 
we have (1.2), since 5 is an additive operator, B is a group and ß (y' )e  K^. From the same 
equation: ä  (x) +  ß (y) =  (ß (y) +  5 (x)) +  c, by adding ß (y') to the left-hand side, and 
œ (x') to the right-hand side, we have (1.3), since ß (y') e Kx and a (x') e Kp, while [ä (x) , ß (y)] 
and à {x') permute.

Denote b y i^  the subclass of JT containing the loops L which satisfy 
the axiom:

(vi) For any x e  H and y e  L, a (x) +' (a (x') -f y) ~  y. (We say that 
L satisfies the inverse property with respect to ôc (H)).

Denote by 2 the subclass of containing those loops L which satisfy 
the axiom:

(vii) oc (H) c  K,
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Denote by ^ the subclass of containing those loops L which satisfy 
the axiom:

(viii) L is a group.

Remark 1.3. In this last case, some of the axioms are superfluous, as one can easily see.

Remark 1.4. Jfé7, as the class of objects (that is, the objects are (L , a , ß , à , ß)), toge­
ther with the loop homomorphisms 9 : L —► L/ (VL , L'eJ^f), such that the following four 
diagrams:

( M )

-> L' H *|H H ' H - ^ - *  H '
oe| a' ß Iß' a &' , ß1 \ > * ’ ^

L'

are commutative, forms a category with ,J^ 2 a n d ^  as full subcategories. (It is clear 
that 9 (x) eH ', for every x  eH , hence 9 | H is a group homomorphism from H to H '. Re­
mark 1.4 can be immediately verified).

Lemma 1.2. I f  L eJ ^ , then\

[ÔC (O  , p O)] =  ([«. (x) , P (y)])' =  [Sc (x) , P ( / ) ]  .

Proof. Keep the notation c — [à (x) , ß O')]. To prove the first equality, we add, in 
turn, c' to the right-hand side, a (xf) and ß (y') to the left-hand side of the equation à (x) fi- 
fi- ß O') =  (ß i l )  +  ôc {x)) fi- c , \ fx  j  eH . Because of the properties: c'e Kp , (vi) , ß (y') e K^, 
(1.3), we obtain the desired equality. The second equality holds for any Lejféfi Indeed, by 
adding (ß ( ÿ )  fi- 5c (x1)) to the right-hand side of the equation: (5c (x) fi- ß (y)) fi- o'— ß (y) fi- 
fi- a (x) , \ / x  , y  sH , we obtain the last equality. This is because of the properties ß (j/')e K^, 
(v) , (iv), the fact that H is a subgroup of B (which is also a subgroup); therefore, we have 
((5c (x) fi- ß (y)) fi- Cr) fi- ß ( y1) =  (ôc (x) fi- c'+  ß (y)) fi- ß (y ') =  a (x) +  c ' =  c '+  ôc (x).

2. C o r r e s p o n d e n c e  b e t w e e n  fé7 a n d  s e

The next propositions carry out the correspondence between fé7 and Jfé7. 
Namely, we shall define two mappings: T : fé7 —>£d and T Ĵfé7 -> fé7 such that 
(T'oT) (N) and N are isomorphic near-rings, for any N 6 fé7, while (ToT') (L) 
and L are isomorphic loops, for any LeJ£C We call such a correspondence 
a Malcev's correspondence between the classes fé7 and The established 
correspondence will be an equivalence between the formalized theories 
a n d /^  of the two classes fé7 and (in the sense of [9]; see also [7]). (We 
note that the two classes are axiomatizable). This means that there exist 
two recursive mappings (algorithms) T and T such that
for every closed formula A G , T (A) is a closed formula of ; A is true 
on all N G fé7 if and only if T (A) is true on T (N)eJfé7, and, for every closed 
formula B of , T(B) is a closed formula of B being true on all 
L e -fé7 if and only if T'(B) is true on T' (L)e fé7.
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Proposition 2.1.. I f  ( N , + ,  •) is a left C-ring from <g, then-.
L =  N x N  XN, together with the binary composition defined by\

x  +  y  =  O ' ]  +  xi ,  j i  +  ^ 2 . y s  +  * 2 -yi  +  x s) » v *  =  {xx , x 2 , x 3 ) e L ,

Vy =  O i , J'a > jVs) e L, zj a loop from  «2P. 7%̂ following implications hold:
N e ^ ^ L e ^ . N e ^ - ^ L e ^ . N e ^ - ^ L s f .

Proof. Obviously, so we have a binary composition on L, with o =  (o , o , o) as its 
unique two-sided zero. Now the equations a - \ - x = b , y f a ^ = b ,  have unique solutions 
for any a =  (a± , a2 , a3) and b =  {b1 , b2 , b3) from L, namely: x — (bx — ax , b2 — a2 , 
h  —  H  — ar  0*i — ^1)) and j  =  (— ax +  b± , — ^2 +  b2 , — (— a2 +  b2) • +  £3). It
is easy to prove that the mappings oc and ß from L to L, given by:

a (*) =  (o , o , x2) , ß (*) =  (o , o , xf) , \fx =  , x 2 , x 3) g L

are endomorphisms of L, with A =  Ker oc =  {(xx , o , x3) | xx , x3e N} , B == Ker ß =  {(o , ;r2 , x3) | 
\ x 2 , x 3 e N}. We can directly verify that A and B are groups with the properties asked by 
the axioms (ii)-(v). For instance, for any x =  (x1 , o , x3) g A , w  =  (o , w2 , w3) g B , y  , z  g L, 
we have: (x +  y)  +  * =  * +  (y +  z) =  +  y x +  xx , z 2 +  T2 ,*8 +  y 2 •z1 +  .y3 +  z3) and
O' +  s) -f  w = y  +  (* +  w) =  (^  + ^ !  ,w 2 +  s ,  + j /2 ,w 8 +^3 +  y 2-*! + y 3), hence B e  Kp , 
A C K À.

Define the functions a : H  - > B , ß : H  ->-A, by:

a (x) =  (o , , o) , ß (x) =  (x3 , o , o) , V* =  (o , o , x3) g H.

They are group homomorphisms and à (H) , ß (H) satisfy the axioms (iii)-(v) (straightfor­
ward calculations). Therefore, L belongs to JP. Now if N is a strict C-ring (from ^ j) , then 
for any x  g H and y  g L , x  =  (o , o , x 3) , y  =  (y1 , y 2 , y 3), we have ôc (*) +  (&(*') +  j/) =  jk, 
henceL eJg^. If N g then L gJ£?2 , since (* +  Si (y)) +  0 =  x  +  .(a O') +  z)9 for any j , ^ L ,  
y  e H. If N g ^ , then L is a group, and, hence L belongs to ^ .

P ro p o s itio n  2.2. I f  (L , , o") is a loop from SP, then H is a near-ring
from P with respect to the binary operations'.

x © y  — y  +  x y

x © y  =  [à (x) , ß (y)] , Vx , y e  H .

I f  L g PP1 (resp. PP2, ^), H g ^  ^  , Off) .

Proof. It is clear that (H , ©) is a group [Remark i. i] ,  and x  Q y e  H, for any x  , y  e H 
[Lemma i.i] .  We have: o Q y  =  [a (o) , ß (y)] — [o , ß (y)] — o, for any y  g H, by using 
(1.2) or (1.3). To prove the left distributivity of Q  over ©, we use the following facts: 
(1-3), [&(*), ß(*)] e K x , [a (* ),ß (* )]  e K x , ( V ) , ß ( / )  e Kx , (1.3), à (x) g Kp , a (x) e Kp ,
P OO e KX J  (T') + ß («') = ß O'1 + '̂) e K A, p ( ^ ) G K „ K  T)' = y  + ß W e , and 
of course, the additivity of a and ß whenever necessary. We have: (x Q y )  ® (x Q  y) =  
=  P W  > ß (*)] +  ta W  J  (T)] =  [a W  , ß (^)] +  ((ßCy') +  5c(x)) +  (ß(y) +  à (*'))) =  ([a (x) , ß (*)] +  
+  (ß ( j ')  +  5c (x))) +  (ß (y) +  a {x')) =  (([a (x) , ß (z)] +  ß ( y1)) +  a (x)) +  (ß (y) +  5c (x')) =  
=  (P (TO +  ( P  W  , ß (5)] +  5c (x))) + ‘(ß (y) +  5c (xr)) == (ß (y') +  (((ß (X) +  5c (x)) +  (ß (s) +  
+  a (x'))) +  5c (x))) +  (ß (y) +  5c (x')) =  (ß (y') +  ((ß (z') +  5c (x)) +  ß(z))) +  (ß(y) +&(x'))  =
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=  ((ß (y )  +  ß y ')) +  (s (*) y  ß (*))) +  (ß ( y  +  à (*')) =  (ß ( y  +  *') +  « (y )  +  $  y  +
+ (ß (y + “ (x'))) =  (ß (0 + y)') + ôc {x)) + (ß (z + y  + a (x')) = [ôt (x) , ß (z + y  ] =
=  ©  (y ©  y  > for ail .r , jk , 2 e H. The second statement of Proposition 2.2 can be verified
in the same manner.

THEOREM 2.3. (i) There is a Mal'cev's correspondence between the classes 
and ST. (ii) The theories of the two classes are equivalent.

Proof, (i) Define T : —►=£?, by T (N) =  L ,VN g îf, as in Proposition 2.1, and
:ST by T ' (L) =  H, VL eST, as in Proposition 2.2, We have the near-ring isomor­

phisms, t :N  -> T '(T (  N) ) , VN g<̂ , given by:

T (x) =  (o , o , x) , \ fx  e N .

(The proof is quite simple and we omit it).
Then we construct the function <j : T (T' (L)) L , VL gJ£?, by defining:

a ( to  , , x3)) =  ß ( x j  +  x3 +  à (x) , V C*i, *2 > *3) e T (T ' (L)) >

hence x 1 , x2 , x3 e H C L. Note^that in the definition of <7, we can avoid using brackets, 
because of one of the relations: ß (xx) e Kx or a (x2) e Kp, which are both true. We have:
® y)  T y±) T (x3 +  [y ( 2̂) > ß Ofi)] T y%) T °c (x2 T y 2) ~  ß (-̂ î) T ((ß (Ti) T xz)
+  (joe (x2) , ß (jKi)] +  y 3)) +  (a (x2) +  a (y2)) = J ß  (xj) -f x 3) +  (ß (T i) jf  ((ß (y±) +  a (x2)) +
+  ( ß W  +  *(*2))) +T3)) +  (“ (*2) +  5 W )  =  ((ß(*i) +  -*3 +  “ W )  +  ( I W  +  (a (*2) + T 3)))-h 
+  (a (*2) +  Sc ( j 2)) =  c W  +  (((ß (Ti) +  T3) +  a (x2)) +  (à (x2) +  à (y2))) =  a (x) -f  (ß ( y j  +  
+  T3 +  & (T2)) =  a W  +  (T) > V* eT  (T' (L)), hence o is a loop homomorphism. Let 
x  be an element of L, then x1 =  ß (x) , x2 =  oc (x) , x3 =  ß (*j) +  * +  5c (*') are in H (we 
prove it, by applying oc and ß to them). We have g {(x1 , x2 , x^)) =  x. Therefore a is 
surjective. Since g (x) =  g (y) implies that x1 =  y 1 , x2 =  y 2, hence *3 =  y 3 and x  =  y  , o 
is injective. Therefore a is a loop isomorphism. Hence T and T ' define a Mal’cev’s corre­
spondence between ^  and=âf.

(ii) Consider the standard formalized theories«/# an d « /^ , in the sense of [9], of the 
classes ^  andj£?. We note that the list of their primitive symbols contains, respectively, the 
special symbols: 0} f o r , /#  and {+  , o , oc ( ) , ß ( ) , ôc ( ) , ß ( ) , [ , ] }  for
to denote: algebraic operations, neutral elements, additive operators (as unary predicates), 
commutator brackets for denoting the solution of an equation (1.1). By x'  we denote the 
element of L g ST which satisfies equalities x ’ +  x  =  o ■= x  +  x \  for x  g L. We define a 
recursive mapping T : « /#  thus: Let A be a closed formula of « /# . Then A, obtained
from A by rep la c in g ^  +  Xj by Xj +  ^  , o by o, and x^Xj  by [a (x£) , ß (Xj)], is a formula of 
e/g?. Now T (A) =  A (P), where Ä (P) is obtained by relativizing A to the predicate P, given by 
“ x  e Ker oenKer ß ” [9, I. 5,^p. 25]. By Proposition 2.1, we see that A is true on N g if 
and only if T (A) is true on T (N) eSS. For the converse, assume that every closed formula 
B o f j ^ .  is under its prenex form: B =  (Qj^r,) (Q2x2) (Qn x n) Bj (xt , x2 ,■ ■ ■, xn , o), 
where represents a quantifier and the formula BiG«/# does not contain other quantifiers 
(see [4, II, §3.5]). Construct f  (B) in </# by replacing (Q{ x{) by (Q  ̂x {) (Q ĵk^) ^  ^ ), 
* =  1 ; 2 and the expressions of the form x i +  Xj =  xh by (xj +  x i =  xk) A (y$ Jr y i =
— y~k) A (ßj +  y% ' Xj +  zj =  zk). As it is obvious from the construction of T ', B is true on 
L e  ST if and only if T (B) is true on T ' (L) g Note that one must be careful with the 
“ translations” of the formulas of« /#  by means of T, because the members of ST have nonas- 
sociative additions and, therefore, one must use brackets to show the order of the additions 
contained in these formulas. But when we relativise to the predicate P, the associativity 
law holds again, and then brackets become superfluous.
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It is easy to prove the following:

COROLLARY 2.4. The restrictions of T and T' {respectively, T and T7) 
to the classes %>x and dTx , Q) and dd2 , and ^  (respectively to their formalized 
theories') define a Mal'cev's correspondence (an equivalence) between them.

The last statement (about the correspondence between Q)x and &) is 
the main result of our previous paper [8],

We note now the functorial aspect of the established correspondence:

THEOREM 2.5. The categories Respectively <T1 , CP , £&x) and (respec­
tively JTX , JT2 , @) are equivalent (see [6, II]).

We give only the representative functors between these categories. 
First, we have: F \ IT given by:

F (N) =  T (N) , VN e V (Proposition 2.3) ,

F Ri) =  fil , 7] , 7]) , VT) e Homi (N , N') ,

with F R) (x) =  fi (xx) , Y) (x2) , Y] (x3)) , \fx =  (xx , x2, xB) e L. Secondly, we 
have: G : fit? —> , given by:

G (L) =  T' (L) , VLeJ>? (Proposition 2.3) ,

G (9) =  ç |H , Hom^ (L , L') ,

with 9 |h (x) — 9 (pc) , Vxg H ç L .
Let us finally remark that a Mal’cev’s correspondence can be considered 

for the general situation of the class of left nonassociati ve near-rings and 
a special class of quasigroups. We shall handle it in a subsequent paper.
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