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Magnetofluidodinamica. —- Unsteady Magnetoaerodynamic Forces 
on an Oscillating Circular Cylindrical Shell of Finite Length. Part II: 
Transient solution. Nota di L iv iu  L ibrescu, presentata<*> dal Socio 
C. F errari.

R iassunto. — Questo lavoro, che costituisce il seguito di [1], è dedicato alla deter­
minazione analitica delle forze magnetoaerodinamiche transienti su un pannello cilindrico 
circolare di lunghezza finita, immerso in una corrente di gas conduttore ideale, supersonico, 
in presenza di un campo magnetico.

1. W ithin the investigations concerning the motion of a thin elastic 
body in an electrically conduction gas flow, there are two problems of a 
major practical interest. These are the dynamical structural instability 
(known also as aero-magneto-flutter, see [2]) and the dynamic response, 
consisting in determining the stresses and displacements induced in the 
structure, in the context of the magneto-aeroelastic interaction and the 
existence of an external pressure field.

The last two parts of the work are devoted to this second problem, 
being directed towards two ends. The former of these (constituting the 
content of Part II) consists in determining the magneto-aerodynamic (M — A) 
forces. In this connexion it is worth remarking that in contrast to the 
analysis undertaken in [1] (in which the derived forces, involving a simple 
harmonic time-variation, are appropriate to flutter analysis), in the present 
instance, the more general case of arbitrary time-dependence of the system 
motion is to be considered(1).

The latter end (forming the content of Part III) consists in the exhibi­
tion of an analytical framework allowing the determination of the panel- 
response characteristics.

2. Let us consider a circular cylindrical thin shell of finite length I 
placed in an external, supersonic, ideally conducting gas flow, a magnetic 
field (with H  II U) being present. In order to derive the M — A forces, we 
adopt as valid the physical assumptions exhibited in [1] concerning the 
electro-conducting gas flow. Consequently, we start from the M — A field 
equations ( I . i )  to which we adjoin Eq. (I.2).

(*) Nella seduta del io dicembre 1977.
(1) The notations used throughout this note without any special mention, maintain 

the same significance as in Part I of the work (denoted by [1]). For the sake of brevity 
the equations comprised in [1] to which we shall constantly refer, will be denoted by the 
prefix I.
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Assuming an arbitrary time dependence of the system motion, we consider 
the following representation of the deflection

(i) w  (xx , x2 , t) =  W (xt , t) cos nd

and of the remaining unknown functions 

(2) f ( x ! , , x s , t )  =  j { x x ,x„ , t )  cos n 6 ,

g ( x l t  *2 ,■** , t) =  g  (xx , x s , t) sin nQ ,

where f  (x^ , t) and g ( x i , f) denote generically one of the functions v^x^ , t) , 
vz (,x i , 0  , hx (xi , i) , hz (xì , t) and v2 {xi >t) , h2 {x{, t), respectively, while 
(xx » *2 j x z)i as in [1], denotes a cylindrical coordinate system. Further, the 
problem will be treated by employing in the field equations both a Laplace 
transform T.) with respect to xx and a Fourier transform {&. T.), with 
respect to t, where xi == x j l  (i — 1 , 2) ; x3 == and t =  tXjj I denote the 
spatial and temporal dimensionless coordinates, respectively.

Let us define the required transforms as:
00 +00

(3) f * *  0  . *3 ; f )  =  & &  { /}  =  I I / (* 1 . «3 ; 0  exp (— sxt — jp t)  dxx d< ,
0 -oo (7 =  (— i)1/2)

/  being one of the functions entering in the field equations, while s and p  
are dimensionless variables in T. and T., respectively.

Applying (3) to Eqs. (I.i)  and (1.2), invoking the continuity condition 
of disturbances at xx =  o± (see [1 ]), as well as the finiteness one for | £ | —> 00, 
and following the same steps as in [1], all these yield a governing equation 
for p2̂  similar to that for p (see Eq. (1.8); furthermore, one gets the expres­
sion for P j j^ i  =  (p+ — p -  — as under

(4) #  a\ Po L  ( tf  _  X2 f*) 4, (?) ( J , / )  ; (+ (?) =  K„ (?)/(?K ; (?)))

0which is similar in form to Eq. (I..13), where W (s) is to be replaced by 
( s , p) ■(== {W (xx , £)}), p. being expressed now by p. =  M (jp  +  s). 

A t this point, in order to obtain explicitely P|*3==1, use will be made of 
the same asymptotic evaluations i) and ii) of (Ç), given by Eqs. (1.14) and 
(1.18), respectively.

3. Using in (4) the evaluation i) of (Ç), and taking the inversion into 
the spatial domain, we obtain

3W ^ (*, , p) '
(5) fa = l =  ^ [ ci K (*, , p) dXx xx=0

-{“ / K (xx ?i î p) X

X U  ~4r +  *JM p  - 4 -  -  ,P) d^xl ,\ 3çi / J
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the kernel function K (xt , p ) being defined in terms of dimensionless quanti­
ties cl9 T as in Eq. (1. 16), the only exception referring to o> which
is to be replaced therein by p.

In order to obtain the original, i.e. P|*3=1, the inverse T. of (5) will 
be taken; therefore, we multiplicate both members of (5) by (2 tc)"1 exp (Jpt) 
and integrate them from — 00 to +  00. Further, the convolution theorem 
(in the context of ^  T.) as under the modified form

+00 +00

—00 —00

will be used. All that yields the M — A pressure expression

+00

3W ^ , t )
(7) P|*3«=l -- ^  | 1̂ j  K fai f Î T) dX-i

—00 

*1 +00

+ f f
0  —00

dT +

o2 o2 \
2 M2 - - - --  +  M2 ) X

3t

X W (Çx, T) d l 1 .

depending upon the instantaneous values of the panel-deflection as well as 
the past history of the motion, where

K fa i , i — t )

+00j  K (* ,, ^  -m “ t)p) em ~^ àp .

4. A t this point it is worth remarking that in obtaining Eq. (7) no a 
priori supposition concerning the time variation of the dependent variables 
has been postulated. However, for obvious physical reasons, it must be 
considered that prior to the beginning of motion, i.e. for the system at rest 
(defined over the interval — 00 <  I <  t0 of the f-axis), all the perturbations 
are equal to zero, being different from zero only on the interval t0 <  /  <  00, 
where t0 denotes the first moment of motion. Consequently, we shall define 
the generalized perturbations

(8) /  («1, *3 ;f)  =  Y (i — 10) / ( S i , xti; i) ,

and the generalized deflection

(9) W (x 1 ; f) =

where Y  (i — £0) denotes the Heaviside distribution defined by: Y (£ — £0) =  1, 
t  >  t0 ; Y (i — iö) ~  o , i  <  t0. Therefore, extended by zero for i  < i 0y the
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above mentioned functions become, in terms of Eqs. (8) and (9), defined 
over the entire temporal axis. Considering W , t) as a separable function, 
i.e.

(10) W ( x 1 , t )  =  V ( f ) W ( x 1) ,

and having in mind that Eq. (7) expresses the pressure in terms of the gene­
ralized deflection, we shall use therein besides (9) and (10), the relations

(I J) yd) (t — i0) =  8 (f — 10) ; V (t) 8 (i -  to) =  V (to) S (t — 10) ;

V (t) S<*> (t -  to) =  V (t0) S(1) (t — 10) -  V(1) (to) S (t — i0) ,

which are well-known in distribution (or generalized function) theory—see 
e.g. 13]—> where 8 (t) is D irac’s distribution, while / (1) denotes the first 
order time derivative either of the distributions 8 or Y, or of the assumed 
infinitely, smooth function V (f). Moreover, taking into account that the 
support of Y (i — i0) V (t) is contained in i0 <  i <  00 and supposing that 
supp K (xx ; t  — i0) a  {t ; t0 <  i <  00}, all that leads finally to the M — A 
pressure expressible as

(i2)i P ( * i ,* 3 =  ï ;*) = -0 ^ O ) .

where sé  is the M — A operator which under zero initial conditions reads

(i2)2 • * (  ) = « U i %=0
dT +

*11

0 4 ^
■ 2 M24 = r^ - '+  M2-^—-| d ^ id r l  .

3t. 3T2 /  J
)_ o  1\/T2 38 O  I I A/T2 .

The presence of spatial and temporal memory effects is to be remarked in 
(12)^ ; they are expressed through the dependence of the pressure at a parti­
cular point â?! (o <  xx <  1) and at a particular moment i  (i0 <  t <  00) upon 
the panel deflection at all points o <  £j <  xx and at all previous times 
i0< T < i .  In this way, the physical system (whose mathematical counterpart 
lies in Eq. (12) meets the so called causality principle (see e.g. [4]).

5. The use from the very beginning of the distributional methods would 
allow us to get directly (12). However, our present approach to the problem 
has led to a more general result consisting in Eq. (7), which, besides the 
instance (12), allows us to obtain the pressure based on the simple harmonic 
time-variation. Thus, inserting in (7) W as expressed by W (æx , î) =  
W  (xt) exp (j&t), where co denotes the dimensionless frequency, and further,
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invoking the well-known expression of Dirac’s distribution, i.e. 8 (f) =
+00

(2 Tt)-1 /  exp (ycof) d(ù and having in view the role of unity played by the
—00

8-distribution in the convolution process, all that yields Eq. (1.15), derived 
in an ad hoc m anner in [ 1 ].

6. W ithin the evaluation ii) of 4* (£), from (4) we get the M ~ A  pressure 
as expressed by

(13) P|*s-1 =  — K1 — X2) w " +  2 “ >' +  . VX2 >  o ,

where no a priori assumption concerning the time-dependence of the system 
motion has been made. A t this point the concept of generalized deflection 
is to be taken again. Therefore, using (9), (11) and (1), expanding W  (xl f t) 
in terms of modal functions of the panel as

(14) w ^ , o  = q=l

and invoking the homogeneous initial conditions, from (13) we get (gas 
index-not as an exponent!)

N
(15) P (®i, X.t , xA =  I ; t) =  Y (i — 10) 2  Pq (ß i , i) cos n6 ,

ff=l

where

IT2 q R
(16) P , &  , i )  = --------J b -  K1 -  X2) V8 w "  +  2 V ,w ;  +  v { W J  ,

denotes the pressure due to the mode W q (x{)9 N being the num ber of modes
considered in the analysis.

For the sake of comparison we shall now derive the (nondimensional)
1

generalized forces Qqp as defined by Qqp =  (p0U 2)-1 J  Pq (xx , t) W p (xx) dxj ; 
in conjunction with (16) they transcribe as 0

1

(17) =  [(1 — X2) vq Wq Wp 2 v q W jW f +  v q W s Wp] àxx,

d i  >  t0

where vq (t) == V q (£)//.
Specialization of (17) for the classical case yields the results derived 

in [5], while for harmonic time-dependence, Eq. (13) goes into (1.19). For 
simply-supported edge conditions (for which W tf (x-j) =  sin £7^), Eq. (17)
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transforms as

(i 8) QtP =  — 7 ^ 7  1 4 pq (i ( Oî+îO ...
I P* — q% 9

wherefrom, for vq (t) — v0 =  const., one obtains

(19) QqP =  (2 m y 1 R y  n2 vQ (1 — x2) sqp,

8qp denoting Kronecker’s symbol. As it may easily be seen from (18), the 
elements Qqp of the m atrix Q =  (Qqp) satisfy the reciprocity relation Qqp =  
=  (— i)ff+p Qpq, whereas (19) shows that Q is a diagonal one.

The next part of the work (Part III) will deal with the exhibition of an 
analytical framework allowing the determination of the panel-response charac­
teristics.

(3 =  P) 

( a ^ P )

(i >  i0)

a  >  q
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