ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

ALEXANDRU C. NEAGU

The prolongations of G-spaces

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **63** (1977), n.6, p. 509–512. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1977_8_63_6_509_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Geometria differenziale. — The prolongations of G-spaces. Nota di Alexandru C. Neagu, presentata (*) dal Socio E. Martinelli a nome del compianto Socio B. Segre.

RIASSUNTO. — In questo articolo, si ottengono i prolungamenti d'ordine r di un G-spazio differenziabile, nel quale tutte le orbite sono dello stesso tipo, G essendo un gruppo di Lie compatto.

In this paper we construct the holonomic prolongations of order r of a differentiable G-space with G a compact Lie group and all orbits of the same type (see [1]). The prolongation of order r is a G_m^r -space, where G_m^r is the semi-direct product $L_m^r \times T_m^r G$ (see [3], [4]). As an example we consider a proper and free action of G on a manifold.

Let X be a differentiable G-space with all orbits of the same type G/H [1]. It is well known that the canonical projection of X on the orbit space $X/G = X^*$ defines a fibre bundle structure with the fibre G/H and the structure group N/H = K, where N is the normalizer of H in G [1].

Let $X^{(H)}$ be the fixed point space of H, then X is identified with the twisted products $X^{(H)} \times_H G$ and $X^{(H)} \times_K (G/H)$, respectively and $X^{(H)}$ is a principal fibre bundle over X^* with the structure group K (see [1]). Let Ψ be the set $\{(\varphi,\sigma)\}$ where $\varphi: U \subset R^m \to X^*$ is a local diffeomorphism about $o \in R^m$ and $\sigma: \varphi(U) \subset X^* \to X$ a local differentiable cross section over $\varphi(U)$ of the bundle $X \to X^*$. Let $\mathscr{E}^r X$ be the set $\{(j_0^r \varphi, j_{\varphi(0)}^r \sigma)/(\varphi, \sigma) \in \Psi\}$ where $j_0^r \varphi$ (respectively $j_{\varphi(0)}^r \sigma$) is the r-jet of φ (respectively φ) in $o \in R^m$ (respectively $\varphi(o) \in X^*$). We observe that $j_0^r \varphi \in H^r(X^*)$ and $j_{\varphi(0)}^r \sigma \in J^r X$, where $H^r(X^*)$ is the principal fibre bundle of r-frames tangent of X^* and $J^r X$ is the fibre bundle of r-jets of the local cross sections of the fibre bundle $X \to X^*$ (see [4]). It is obvious that $\mathscr{E}^r X$ is identified with the fibre product $H^r(X^*) \times X^*$ X^* and hence $\mathscr{E}^r X$ is a differentiable fibre bundle.

If X is the right G-space $\mathbb{R}^m \times \mathbb{G}$ with the action

$$((u\;,\;a)\;,\;g)\in(\mathbb{R}^m\times\mathbb{G})\times\mathbb{G}\to(u\;,\;g\cdot a)\in\mathbb{R}^m\times\mathbb{G}$$

and we consider the set $\overline{\Psi} = \{(\overline{\varphi}, \overline{\sigma})\}$, where $\overline{\varphi} : U \subset \mathbb{R}^m \to \mathbb{R}^m$ is a local diffeomorphism such that $\overline{\varphi}(o) = o$ and $\overline{\sigma} : \overline{\varphi}(U) \to G$ is a differentiable map, then the set $\{(j_0^r \overline{\varphi}, j_0^r \overline{\sigma})/(\overline{\varphi}, \overline{\sigma}) \in \overline{\Psi}\}$ is identified with the semi-direct product $L_m^r \times T_m^r G = G_m^r$ where L_m^r is the structure group of $H^r(X^*)$ and

^(*) Nella seduta del 18 novembre 1977.

 T_m^rG is the group of m^r -velocity on G (see [3], [4]). The G_m^r has a group structure with the product

(1)
$$ar{h}_2 \cdot ar{h}_1 = (ar{y}_2, ar{S}_2) \cdot (ar{y}_1, ar{S}_1) = (ar{y}_2 \cdot ar{y}_1, (ar{S}_2 \cdot ar{y}_1) \cdot ar{S}_1)$$

where $\bar{h}_i = (\bar{y}_i, S_i) = (j_{0i}^r, j_{0i}^r)$, (i = 1, 2) (see [3]).

Analogously, let $\mathbb{R}^m \times (\mathbb{H} \setminus \mathbb{G})$ be the right G-space (where H is a closed subgroup of G) with the action:

$$((u, H \cdot a), g) \in (\mathbb{R}^m \times (H \setminus G)) \times G \rightarrow (u, H \cdot g \cdot a) \in \mathbb{R}^m \times (H \setminus G)$$

and we consider the set $\overline{\Psi} = \{(\tilde{\varphi}, \tilde{\sigma})\}$, where $\tilde{\varphi}: U \subset \mathbb{R}^m \to \mathbb{R}^m$ is a local diffeomorphism of \mathbb{R}^m such that $\tilde{\varphi}(0) = 0$ and $\tilde{\sigma}: \tilde{\varphi}(U) \to H \setminus G$ is a local differentiable map. Let F_m^r be the set $\{(j_0^r \tilde{\varphi}, j_0^r \tilde{\sigma})/(\tilde{\varphi}, \tilde{\sigma}) \in \overline{\Psi}\}$. It is clear that F_m^r is canonical identified with $L_m^r \times T_m^r(H \setminus G)$, where $T_m^r(H \setminus G)$ is the space of m^r -velocity on $H \setminus G$.

THEOREM I. F_m^r is canonically identified with the space $T_m^r H \setminus G_m^r$ where $T_m^r H$ is the group of m^r -velocity on H (subgroup of $T_m^r G$ and hence G_m^r).

Proof. $(j_0^r \overline{\varphi}, T_m^r H \cdot j_0^r \overline{\varphi}) = T_m^r H \cdot (j_0^r \overline{\varphi}, j_0^r \overline{\varphi})$ implies that $L_m^r \times (T_m^r H \setminus T G_m^r) \subset T_m^r H \setminus G_m^r$. The opposite inclusion follows from:

$$\begin{split} j_0^r \, \overline{\sigma}_1 \cdot (j_0^r \, \overline{\varphi} \, , \, j_0^r \, \overline{\sigma}) &= (j_0^r \, i \mathrm{d}_{\mathbf{R}^m} \, , \, j_0^r \, \overline{\sigma}_1) \cdot (j_0^r \, \overline{\varphi} \, , \, j_0^r \, \overline{\sigma}) = \\ &= (j_0^r \, \overline{\varphi} \, , \, j_0^r \, (\overline{\sigma}_1 \circ \overline{\varphi}) \cdot \overline{\sigma}) \qquad \text{where} \quad j_0^r \, \overline{\sigma}_1 \in \mathbf{T}_m^r \, \mathbf{H} \, . \end{split}$$

We have the following identification $T_m^r(H\setminus G) = T_m^r H\setminus T_m^r G$. Indeed, let $\tilde{h} = (\bar{y}, \bar{S}) = (j_0^r \bar{\varphi}, j_0^r \bar{\varphi})$ and $\tilde{h} = (\tilde{y}, \bar{S}) = (j_0^r \bar{\varphi}, j_0^r \bar{\varphi})$ be the elements of G_m^r and F_m^r , respectively. Thus $(\bar{\varphi} \circ \bar{\varphi}, (\bar{\sigma} \circ \bar{\varphi}) \cdot \bar{\sigma}) \in \tilde{\Psi}$ and hence:

$$\tilde{h}\cdot \bar{h} = (\tilde{y}\cdot \bar{y}, (\tilde{\mathbf{S}}\cdot \bar{y})\cdot \bar{\mathbf{S}})$$
 .

This formula represents an action of G_m^r on $T_m^r(H \setminus G)$. It is easy, by a direct calculus, to prove that this action is transitively. The theorem will be proved if the isotropy group of any point $\tilde{h} \in F_m^r$ is conjugated to $T_m^r H$.

LEMMA. The isotropy group of $\tilde{h}_0 = (\tilde{y}_0, \tilde{S}_0)$ is $T_m^r H$, where $\tilde{y}_0 = j_0^r id_{\mathbb{R}^m}$, $\tilde{S}_0 = j_0^r \tilde{\sigma}_0$, and $\tilde{\sigma}_0 : u \in \mathbb{R}^m \to \tilde{\sigma}_0(u) = H \cdot e \in H \setminus G$.

Proof. If
$$\bar{h} = (\bar{y}, \bar{S}) = (j_0^r \bar{\varphi}, j_0^r \bar{\sigma})$$
, then:

$$\tilde{h}_0 \cdot \tilde{h} = (\tilde{y}_0 \cdot \bar{y}, (\tilde{S}_0 \cdot \bar{y}) \cdot \bar{S}) = (j_0^r \, \tilde{\varphi} \circ \overline{\varphi}, j_0^r \, (\tilde{\sigma} \circ \overline{\varphi}) \cdot \overline{\sigma}),$$

where $\tilde{\varphi}_0 = i d_{\mathbb{R}^m}$. If $\tilde{h} \in T_m^r H$, then $\bar{y} = j_0^r i d_{\mathbb{R}^m}$ and $\bar{\sigma} : \mathbb{R}^m \to H$, hence $(\tilde{\sigma}_0 \circ \bar{\varphi}) \cdot \bar{\sigma} : \mathbb{R}^m \to H \setminus G$, $((\tilde{\sigma}_0 \circ \bar{\varphi}) \cdot \bar{\sigma})$ $(u) = \tilde{\sigma}_0 (\bar{\varphi}(u)) \cdot \bar{\sigma}(u) = H \cdot e$ and $(\tilde{\sigma}_0 \circ \bar{\varphi}) \cdot \bar{\sigma} = \tilde{\sigma}_0$. It follows that $\tilde{h}_0 \cdot \tilde{h} = \tilde{h}_0$ and thus $T_m^r H$ is a subgroup of the isotropy group of \tilde{h}_0 . In order to prove the converse inclusion, we estimate the equality $\tilde{h}_0 \cdot \tilde{h} = \tilde{h}_0$, $\tilde{h} \in G_m^r$ in the local coordinates about $e \in H$ and $e \cdot H \in H \setminus G$, respectively and find that $\tilde{h} \in T_m^r H$.

THEOREM 2. $\mathcal{E}^r X$ is a right G_m^r -space with the action:

(2)
$$h \cdot \bar{h} = (y \cdot \bar{y}, S \cdot (\bar{S} \cdot \bar{y}^{-1} \cdot y^{-1})),$$

where $h = (y, S) \in \mathcal{C}^r X$ and $\bar{h} = (\bar{y}, \bar{S}) \in G_m^r$.

Proof. If $y=j_0^r \varphi$, $S=j_{\varphi(0)}^r \sigma$, $\bar{y}=j_0^r \bar{\varphi}$ and $\bar{S}=j_0^r \bar{\sigma}$, then $(\varphi \circ \bar{\varphi}, \sigma(\bar{\sigma} \circ \bar{\varphi}^{-1} \circ \varphi^{-1})) \in \bar{\Psi}$. Indeed $\varphi \circ \bar{\varphi} : V \subset \mathbb{R}^m \to X^*$ and $\sigma \cdot (\bar{\sigma} \circ \bar{\varphi}^{-1} \circ \varphi^{-1}) : (\varphi \circ \bar{\varphi}) (V) \subset X^* \to X$. If $x^* \in (\varphi \circ \bar{\varphi}) (V)$, then $(\sigma \cdot (\bar{\sigma} \circ \bar{\varphi}^{-1} \circ \varphi^{-1})) (x^*) = \sigma(x^*) \cdot \bar{\sigma} (\bar{\varphi}^{-1} \circ \varphi^{-1} (x^*))$. It follows that $\pi \circ (\sigma \cdot (\bar{\sigma} \circ \bar{\varphi}^{-1} \circ \varphi^{-1})) (x^*) = x^*$, where $\pi : X \to X^*$ is the canonical projection. Indeed, σ is a cross section of the fibre bundle $X \to X^*$, $(\bar{\sigma} \circ \bar{\varphi}^{-1} \circ \varphi^{-1}) (x^*) \in G$ and the orbit of $\sigma(x^*)$ is mapped by π in x^* . Passing to r-jets, we obtain relation (2). By a direct computation and following (1) and (2), we have $h \cdot (\bar{h}_2 \cdot \bar{h}_1) = (h \cdot \bar{h}_2) \cdot \bar{h}_1$.

Let $\bar{h}_0 = (\bar{y}_0, \bar{S}_0)$ be the unit element of G_m^r . Then, (2) yelds $h \cdot \bar{h}_0 = h$.

THEOREM 3. The orbits of the above action of G_m^r on \mathcal{C}^r X coincide with the local fibres of the fibre bundle \mathcal{C}^r X \to X*.

Proof. Let $j^r: \overline{g}^r X \to X^*$ be the map defined by $j^r(h) = \varphi(0)$, where $h = (y, S) = (j_0^r \varphi, j_{\varphi(0)}^r \sigma)$. Let $h = (\overline{y}, \overline{S})$ be an element of G_m^r . Then $j^r(h \cdot h) = (\varphi \circ \overline{\varphi})$ (o) $= \varphi(\overline{\varphi}(0)) = \varphi(0) = j^r(h)$. Let h_1 , h_2 be two points on the same fibre and suppose that $h_i = (y_i, S_i) = (j_0^r \varphi_i, j_{\varphi(0)}^r \sigma_i)$. Then, from $j^r h_1 = j^r h_2$, we deduce that $\varphi_1(0) = \varphi_2(0)$. It follows that σ_1 and σ_2 are the cross sections over $\varphi_1(U) \cap \varphi_2(U) \subset X^*$, where U is an open neighborhood of $o \in \mathbb{R}^m$. This allows us to conclude that $\sigma_1(x^*)$ and $\sigma_2(x^*)$ are contained of the same orbit of G-space X. Let $\overline{\varphi}$ be the map $\varphi_1^{-1} \circ \varphi_2$ and $\overline{\sigma}: U \to G$ such that $\sigma_2 \circ \varphi_2 = (\sigma_1 \circ \varphi_2^{-1}) \cdot (\overline{\sigma} \circ \overline{\varphi}^{-1})$. Then, if we denote $h = (j_0^r \overline{\varphi}, j_0^r \overline{\sigma})$, we have:

$$h_1 \cdot \bar{h} = (y_1 \cdot \bar{y}, S_1 \cdot (\bar{S} \cdot y^{-1} \cdot y_1^{-1})) = (y_2, S_2) = h_2$$
.

Remark 1. The fibre of $\mathscr{C}^r X \to X^*$ is F_m^r and hence $\mathscr{C}^r X$ is a G_m^r -space with all orbits of the same type. The orbit space $\mathscr{C}^r X/G_m^r$ coincides with X^* .

Remark 2. $\mathcal{E}^r X \to X^*$ is a fibre bundle with the structure group $\overline{K}_m^r = T_m^r H \setminus N(T_m^r H)$, where $N(T_m^r H)$ is the normalizer of $T_m^r H$ in G_m^r . The fixed points space of $T_m^r H$ (denoted by $\mathcal{E}^r X^{(T_m^r H)}$) is a principal fibre bundle over X^* with the structure group \overline{K}_m^r [1].

THEOREM 4. N $(T_m^r H)$ is canonically identified with $N_m^r = L_m^r \overline{\times} T_m^r N$, where N is the normalizer of H in G.

Proof. Let $\bar{h} = (\bar{y}, \bar{S})$ and $\bar{h}_1 = (\bar{y}_0, \bar{S}_1)$ be two elements of G_m^r and $T_m^r H$, respectively. It follows that:

$$\bar{h}\cdot\bar{h}_1\cdot\bar{h}^{-1}=(\bar{y}\,,\bar{S})\cdot(\bar{y}_0\,,\bar{S}_1)\cdot(\bar{y}^{-1},\bar{S}^{-1}\cdot\bar{y}^{-1})=(\bar{y}_0\,,(\bar{S}\cdot\bar{S}_1\cdot\bar{S}^{-1})\cdot\bar{y}^{-1})\;.$$

If $\bar{h} \in \mathbb{N}_m^r$ then $\overline{\sigma} : \mathbb{R}^m \to \mathbb{N}$ and hence $\overline{\sigma} \cdot \overline{\sigma_1} \cdot \overline{\sigma^{-1}} : \mathbb{R}^m \to \mathbb{H}$. Passing to r-jets, we have $\bar{h} \cdot \bar{h_1} \cdot \bar{h}^{-1} \in \mathbb{T}_m^r + \mathbb{H}$ and hence $\mathbb{N}_m^r \subset \mathbb{N} (\mathbb{T}_m^r + \mathbb{H})$, where $\mathbb{N} (\mathbb{T}_m^r + \mathbb{H})$ is the normalizer of $\mathbb{T}_m^r + \mathbb{H}$ in \mathbb{G}_m^r .

If $\bar{h} \cdot \bar{h}_1 \cdot \bar{h}^{-1} \in T_m^r H$ (with $h \in G_m^r$), then $j_0^r (\overline{\sigma} \cdot \overline{\sigma}_1 \cdot \overline{\sigma}^{-1}) \circ \overline{\phi}^{-1} \in T_m^r H$ and hence we can choose a representative $\overline{\sigma}$ for $j_0^r \overline{\sigma}$ such that $\overline{\sigma} \cdot \overline{\sigma}_1 \cdot \overline{\sigma}^{-1} : \mathbb{R}^m \to \mathbb{H}$. It results that $\overline{\sigma} : \mathbb{R}^m \to \mathbb{N}$ and hence $\bar{h} \in \mathbb{N}_m^r$.

Remark 3. From the canonical identifications $T_m^r H \setminus N_m^r = T_m^r H \setminus N$ $(T_m^r H) = L_m^r \times T_m^r (H \setminus N) = L_m^r \times T_m^r K$, we conclude that \overline{K}_m^r coincides with K_m^r .

THEOREM 5. $(\mathcal{E}^r X)^{(T_m^r H)}$ coincides with $\mathcal{E}^r X^{(H)}$.

Proof. Let $\bar{h}_1 = (\bar{y}_0, \bar{S}_1) \in T_m^r H$ and $h = (y, S) \in \mathcal{C}^r X$. Then:

$$h \cdot \bar{h}_1 = (y \cdot \bar{y}_0, S \cdot (\bar{S}_1 \cdot \bar{y}_0^{-1} \cdot \bar{y}^{-1})) = (y, S \cdot (\bar{S}_1 \cdot \bar{y}_1^{-1}))$$

If $h \in \mathcal{C}^r X^{(H)}$ then the cross section σ have its values in $X^{(H)}$. Let x^* be the image of $x \in X^{(H)}$ by the projection $X^{(H)} \to X^*$, then:

$$(\sigma \cdot (\overline{\sigma}_1 \circ \varphi^{-1})) (x^*) = \sigma (x^*) \cdot \overline{\sigma}_1 (\varphi^{-1} (x^*)) = \sigma (x^*)$$

and $j^r_{\varphi(0)}(\sigma \cdot (\overline{\sigma} \circ \varphi^{-1})) = j^r_{\varphi(0)} \sigma$, hence $h \in (\mathbb{C}^r X)^{(\Gamma_m^r H)}$. If $h \in (\mathbb{C}^r X)^{(\Gamma_m^r H)}$, then $j^r_{\varphi(0)}(\sigma \cdot (\overline{\sigma}_1 \circ \varphi^{-1})) = j^r_{\varphi(0)} \sigma$. We deduce that there is a representative σ for the r-jets $j^r_{\varphi(0)} \sigma$ such that $\sigma : \varphi(U) \subset X^* \to X^{(H)}$ and hence $h \in \mathbb{C}^r X^{(H)}$.

THEOREM 6. The space $\mathcal{C}^r X$ is canonically identified with the twist products $\mathcal{C}^r X^{(H)} \times_{N_m^r} G_m^r$ and $\mathcal{C}^r X^{(H)} \times_{K_m^r} (T_m^r H \setminus G_m^r)$, respectively.

Proof. By a well known theorem of the theory of G-spaces (see [1]), we have the following identification $\mathcal{E}^r X = (\mathcal{E}^r X)^{\binom{\Gamma^r H}{m} H} \times_{N^r} G^r_m$.

Remark 4. The map:

$$h = (j_0^r \varphi, j_{\varphi(0)}^r \sigma) \in \mathcal{C}^r X^{(H)} \to \sigma (\varphi(0)) \in X^{(H)}$$

defines on $\mathcal{E}^r X^{(H)}$ a principal fibre bundle structure of the structure group $L_m^r \overline{\times} T_{m,\bar{e}}^r K$, where $T_{m,\bar{e}}^r K = \{j_0^r \overline{\sigma}/\overline{\sigma} : \mathbb{R}^m \to K \text{ , } \sigma(o) = \bar{e} = H \cdot e\}$.

EXAMPLE. Let X be a G-space with a proper and free action of G. Then $X \to X^*$ is a principal fibre bundle with the structure group G (see [1]). In this case $H = \{e\}$ and $T_m^r H$ coincides with the unit of G_m^r . If follows that all orbits of G_m^r -space \mathcal{E}' X have the same type G_m^r , hence G_m^r acts proper and free on \mathcal{E}' X. It is clear that \mathcal{E}' X coincides with the prolongation of order r of a principal fibre bundle (see [4], [3]).

REFERENCES

- G. E. Bredon (1972) Introduction to Compact Transformation Groups, Accad. Press, New-York-London.
- [2] C. EHRESMANN (1955) Les prolongements d'un espace fibré différentiable, «C.R. Acad. Sc. Paris », 240, 1755-1757.
- [3] I. KOLAR (1971) Canonical forms on the prolongations of principal fibre bundles, « Rev. Roumaine Math. Pures Appl. », 16, 1091-1106.
- [4] P. LIEBERMANN (1969) Analyse globale, «Sem. Math. Sup. »,