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Equazioni differenziali ordinarie. —■ Further results on the exist­
ence of periodic solutions of a certain third order differential equation. 
Nota di Jam es O.C. E z e i l o ,  presentata <*> dal Socio G. S a n s o n e .

R iassunto. — L’Autore considera l’equazione x +  (x)x  +  9 (x) x +  f ( x )  — fi (t)
con fi (t) funzione periodica di periodo o , e con ipotesi, non molto restrittive, su 4 (•*)> 
? W  » / W  dimostra l’esistenza di almeno una soluzione periodica di periodo <0 in due 
casi.

I.

Consider the third order differential equation

(1.1) x  +  ax -ff 9 (pc) Pc -\~ f  (pc) =  fi (})

in which a is constant and 9 , / , /  are continuous functions depending only 
on the arguments shown and p  is co-periodic in t , that is p  ( t +  co) =  p  (t)

X

for some co >  o. Let ® (pc) =  j 9 (£) dç. There is a result in [1] by Reissig
ó

which shows that if the following conditions hold:

(i) a 9^0, (ii) I x  I“1 j f  (pc) I —>0 as \ x \ - > o o y (iii) f ( x )  s g n x  >  o (| x \ >  |),
<0

(iv) I x  I"1 I <D (x) I -> o as I x  j -> 00 and (v) j p (t) dt  =  o,
0

then (1.1) has at least one co-periodic solution. The restrictions (i) and 
(iv) here werfe removed in a subsequent paper [2] (See Appendix 3).

We propose, in the present paper, to examine the above result with the 
following weaker conditions on / ,  9 in place of Reissig’s (ii) and (iv) 
respectively:

(1.2) 1/0*0 I < A X \ x  I +  A2 ,

(i-3) I 0 (x) I <  Bi \ x  I +  B , ,

for all x, where A  ̂ >  o , >  o ( 2 = 1 , 2 )  are constants with Ax , Bj suffi­
ciently small. The investigation will, furthermore, be concerned with the 
more general equation

(1.4) x  -f Qt) x  +  9 0*0 ± + f ( x )  =  p  00

(*) Nella seduta del io dicembre 1977.
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in which the coefficient not necessarily constant, is a continuous function 
depending only on but our other main objective is to identify certain 
equations (1.4) for which, subject to the conditions ((iii) and (v) above"):

(1.5) f i x )  sgn * ^  o ( M > i )
CO

(1.6) J  p  (t) dt — o
0

the use of ju s t one (only) of (1.2) or (1.3) would suffice for the existence of 
an co-periodic solution. The position is summed up more clearly in the 
following two theorems for (1.4) which will be proved shortly:

Theorem i . Given the equation (1.4) suppose that 9 , f  and p  are subject 
to (1.3), (1.5) and (1.6) respectively. Then there exists a constant s0 >  o such 
that i f  Bx < .s p, then (1.4). admits of at least one co-periodic solution fo r  all 
arbitrary t]; (x).

Note here the absence of a restriction on
The next theorem covers the special case corresponding to a o when 

results are specialized to (1.1).

THEOREM 2. Given the equation (1.4) in which p  is subject, as before, 
to (1.6), suppose that f  is subject to (1.2) and (1.5) and that

(1.7) (y) >  a >  o fo r  all y  

or, otherwise, that

(1.8) ^ (y) <  — ß <  o fo r  all y,

fo r  some constants a , ß. Then there exists a constant zx >  o such that i f  
A 1 <  then ( 1.4) admits of an co-periodic solution fo r  all arbitrary 9 (x).

Observe that, when specialized to the case =  constant with f  bounded 
Theorem 2 here gives a significant improvement on the results in [2], [3] 
and [4] for the same equation.

2.

The method of proof of either theorem will be by the Leray-Schauder 
technique, just as in [1] except that for our purpose it will be convenient 
here to consider the parameter-dependent equation in the form:

(2.1) X +  [X̂  (£) X +  [L<p (x) % +  (1 --- (x) C-i X +  [if (x) =  [Lp (t)

for dealing with Theorem 1, and in the form:

(2.2) x  +  {(1 — a) [x +  (xj) x +  (X9 (x) x  +  (1 — f )  c2 x  +  y f  (x) =  [Lp (t)
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for dealing with Theorem 2 when is subject to (1.7). The case when is 
subject to (1.8) can also be handled with the same (2.2) but with a replaced 
by (— ß) as will be explained in § 6. Here in (2.1) cx is an arbitrarily chosen, 
but fixed positive constant. The constant c2 in (2.2) is also positive, but its 
value is to be fixed (sufficiently small) to advantage later (see (6.4)).

The equations (2.1) and (2.2) reduce to the same (1.4) when \l =  1 and 
to the constant-coefficient equations:

(2.3) X +  Cx X  =  o

(2.4) X +  OLX +  c2 X =  O

when (i. =  0. It is easily verified that neither of the auxiliary equations 
corresponding to (2.3) or (2.4) has a purely imaginary root. Thus it will now 
be sufficient, as in [1], for our proof of Theorem 1 or Theorem 2 with ^ 
subject to (1.7) to establish merely that there is fixed constant D >  o, whose 
magnitude is independent of ĵl, such that any co-periodic solution x  if) of 
(2.1) or (2.2), corresponding to o <  <  1 satisfies:

(2.5) I x  (t) I <  D , I x  (f) I <  D and | x (t) | <  D ( t  <  / <  t  +  <*>) 

for some t.

3. N otation

Let A 3 e= max | p (t) |. In what follows here the capitals D , D 0 , Dx • • •
0<£<co

are finite positive constants whose magnitudes are independent of the para­
meter jJL and, indeed, in the context of Theorem 1 depend only on cx , A 3 , B2 , 
9 , ^ and / ,  and, in the context of Theorem 2, on c2 , A 3 , A fi, 9 , ^ and / .  
The D ’s without suffixes attached are .not necessarily the same in each place 
of occurrence but the numbered D ’s: D 0 , D j , • • • retain a fixed identity 
throughout.

4. Some preliminary results 

As we shall be dealing extensively here with integrals such as I x 2 dt,

/x2 dt y l x2dt taken over time intervals of length we might as well note
J T  +  CO 't '0  +  co

that if ^  is co-periodic then J  x 2 dt =  J  x 2 dt for arbitrary t  and t 0 , since

T-fC O
0̂

either integral equals j* x 2 dt if ^  is co-periodic. The same is true of J x 2 dt
0  T

T  +  CÙ

and j x2 dt.
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We shall require specially the use of the following two subsidiary results: 

Lemma i. I f  x  =  x  (t) is continuous and periodic in t then
T-j-6) T-fCO

(4.1) j^i:2 d/ <  ~  co2 7T“2 j  x2 d t .
T  T

Proof of Lemma . Let a; have the Fourier expansion:

00
(4.2) x  ~  (ar cos 2 TTG*“1 rt +  br sin 2 TC6)—1 rf) ,

r=o

so that % and x  in turn have the corresponding expansions:
00

x  •—'2 7Tco—1 2  — r  {ar sin (2 îtco“1 rt) — bv cos (2 7CC0“1 rt)}
1

00
x ~  — 4 7T2 co~2 J] r<2 {ar cos (2 ̂co“1 rt) +  br sin (2 tcco“1 r/)} .

r= l

We have, in the usual manner, from the expansion for x  that

T + C O

(4.3) f x 2 dt — 2 7c2 co“ 1 2  r 2 (cz2 +  bl)
J r= l
r

and from the expansion for x that

00
dt  — 8 7t4 to-3 X  ( 4  +  4 )

r=l 
00

<  8 7T4 co“ 3 2  ^  (ar +  &r)

T + 6 )

P

<  4  7U2 CO“ 2 j x
r= 1

T + ( 0

x 2 dt

by (4.3), which proves (4.1).

Lemma 2. x  =  x ( t )  be an ^-periodic solution of (2.1) or of (2.2) 
corresponding to o <  y. <  1

T  +  CO

(44)

T+Û) 
2 , n 2 .2d/ <  Do +  Dì ^  d#J'

fo r  some D 0 , Dj
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Proof of Lemma . Let x  have the Fourier expansion (4.2) so that then

(4-5) X (It — ÜQ -f~ (fh  4“

whether or not ^  is a solution of (2.1) or of (2.2).
If in particular x  (t) is a solution of (2.1) or of (2.2) then we have, in 

view of (1.6) on integrating (2.1), (2.2) that
(Ù

(4-6) j  {(1 — n) ci x  +  [// (x)} dt =  o O' =  I , 2).
0

Since ct > o (i =  i , 2) and /  is subject to (1.5) it is clear from (4.6) with 
o <  [a <  I that

(4-7) ] * ( t o ) | < i .  for some t 0 such that o <  t 0 <  «  .

Now the coefficient a0 in (4.2) is given by
CÙ

a0 — (ù- 1 j  x  (t) dt
0

T0 + CO

=  w 1 J x ( t ) d t ,
V

since x  (t) is co-periodic in t . Now

^ 0 + Û >  „T 0 +  Cù T 0  +  <ù

j  x (t) dt =  tx  ( t ) J  — iti :  (t) d t .
T° T0 To

=  COX (tq) ■ j  tX (f) d t , 

T°
so that, by (4.7),

T0 + tù

I ao I <  1 +  to”1 j  t  (t) I dt
To

and therefore, since o <  t0 <  co ,
Tq + CO

I ao 1 <  I +  D J  I X (t) I dt

<  I +  D
, Jo+«> 

To
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by Schwarz’s inequality. Hence
T 0 + 6 >

(4 .8) <  D2 ^ I +  j
T0

for sufficiently large D2. As for the term under the summation sign in (4.5) 
it is clear by comparison with (4.3) that

T+60

(4.9) 2  ( 4  + 4 ) < D  [ 4  d t .
r — 1 J

T

The result (4.4) now follows on combining (4.8) and (4.9) with (4.5).

5. Proof of Theorem i

Let now x  — x  if) be any co-periodic solution of (2.1) with o <  {x <  1 
and 9 subject to (1.3).

Define I0 >  o , I3 >  0 , I2 >  o by:

Io =  U 2 dt , iï = 1 i:2 dt
J0 0

± x *— x2 dt and

Since

J  xx d

we have, on multiplying (2.1) by x  and integrating, that
CO CO

it  +  [x f  ® (x) x dt =  — (X j ( t )  dt , 
0 0

so that, by (1.3) and since o <  jx 1 ,

(5-0 I22 <  B1 j  I x  11 x I dt  +  j B2 j  ] x I dt +  A 3 j  I j dt 
0 0 0

<  Bi Io I2 T- 6)1̂2 (B2 12 +  A 3 13) ,

by Schwarz’s inequality. But, by (4.4),

(S-2) Io <  B)0 +  Dx Ij

<  P 3 ( i +  I2) ,

by (4.1), for sufficiently large D 3. Thus (5.1) also implies that

I2 <  D 3 Bx It +  (B, D a +  D) I2
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by (4.1); and hence if Bx is fixed, as we assume henceforth, such that

(5-3)

then
I Î < D I * . -

from which it follows at once that

(54) iî <  d 4 ,

and then also, by (4.1), that

(5-5) Ii <  D5 .

Now a combination of (4.7) with the identity:

sh o w s  t h a t

t

x(t)  =  x  ( t 0) +  j £ (s) ds

m a x  ! x  (f) j <  I +  I 1 x  (s) | ds 
0<^ <co J 

T0
T 0  +  W

<  I +  co1/2 ^ j  x 2 (s) d.?^ 

T0

by Schwarz’s inequality. Hence, by (5.5),

(5.6) I x  it) I <  D6 3  I +  <o1/2 Dg/a (o <  t <  w) .

Next, since x  (o) =  x  (co) it is clear x  ( tx) =  o for some iq e [o , co]. Thus 
we have, as a result of the identity:

that

t

x  (t) =  x  ( t 4) +  j  x (s) ds , 
*1

Ti + CO

max 1 x  (t) j <  j x (s) | d.s\
0<t<u> J 

1̂
Tl + W

ti

by Schwarz’s inequality, and therefore, by (5.4), that 

(5.7) I * (f) I <  D7 =  o>1/2 D f  (o <  / <  to)

34. — RENDICONTI 1977, voi. LXIII, fase. 6.
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It remains now to establish the last estimate in (2.5). For this let us note 
from (2.1) that S =  Q, where by virtue of (5.6) and (5.7) and the boundedness 
of p  the function Q satisfies

IQ I <  D8 (I x ! +  1).

Thus if we multiply both sides of (2.1) by x and integrate we shall 
obtain that

T  +  CO T  +  CO T  +  CO

I dtx2 dt <  D8 j  I x I I x I dt -f- Ds j  I x
X X

T +  CO T  +  CO T + C O

; D I  j x 2 c k j ; d*) +  D (  J s *
1/2

by Schwarz’s inequality. Hence, by (5.4),
T +  CO

x2 dt <  D
( M *

which in turn implies that

(5-8)

T + C O

j  x2 dt <  D;
T

Now, since x  (o) =  x  (co) it follows that x  ( t2) — o for some t 2 e  [o , co]. There­
fore we have, from the identity:

that

t

x (t) =  x  ( t 2) +  j x (s) ds y 
*2

t 2 + co

max I x  (/) I <  col/2 ( fx2 (s) d s \  
0<t<(ù \  J J

<  D
T2

by (5.8) .
This completes the verification of (2.5) for all co-periodic solutions of (2.1) 

with o <  (x <  I and Theorem 1 now follows with c0 =  \  D ^ 1 (See ( 5.3)).

6 . Proof of Theorem 2

We deal first with the case subject to (1 • 7). Let then x  =  x  (t) be 
any co-periodic solution of (2.2) with o <  <  1. The whole substance of our
proof, as pointed o u t 'in  §2 will be to establish (2.5) for x  (t). W ith the



JAMES O. C. E zeilo , Further results on the existence, ecc. SOI

groundwork laid out in § 4 the pattern for the proof of (2.5) here is almost 
as in § S and we shall therefore skip any inessential details.

Indeed the main difference between our procedure here and the proce­

dure in § 5 is in the method for estimatingimating /  %2 d t. This time it is conve­

nient to multiply our param eter—dependent equation (2.2) by x  (not by 
^  as in §5) and then integrate. Since

j  , * * = * * - * *  , = * * - / * • *
X

j  £9 (£) d£ =  xq> (x) % , j  xÿ (£) x dt — x̂ V (x) — j  £ ¥  (£) dt
0

y
where T  (y) == J  <p (rj) dvj, and x  is co-periodic, the integration leads at once 

0

to the result:
CO CO

(6.1) (1 —  j j l) oc  ̂x2 dt +  (x j  £ ¥  (ir) dt =
0 0

CO

=  f  ( I  ---  \L) C2 X2 +  [Lxf ( x)  —  [LXf i}  d t .
0

By (1.7) >  a and therefore also (y) >  ay2 for all y.
Thus the inequality (6.1), if (1.2) holds, implies that

CO CO CO

(6.2) J x 2 dt <  a-1 (c2 +  Aj) j  x2 dt +  D J  \x  J dt
0 0 0

CO CO

<  cc1 (c2 +  Aj) J  x2 dt +  D  ̂j x2 dA I
0 x 0

by Schwarz's inequality. By (4.4) and (5.2) this implies in turn that

CO CO CO

(6.3) j  x 2 dt  <  « - 1 (V2 +  A,) Di J ir2 d/ +  D { f  j  x2 dA  +  Ax +  i j  .
0 0 0

Hence if for example c2 and Ax are fixed, as we assume henceforth, such that

(6.4) o <  c2 <  — a D f2 > Aj <  — ocDf2
4 4
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then we have from (6.3) that
COj  i:2 dt <  D 

0

which, in turn  leads to (5.5) and therefore to (5.6) as in § 5.
It remains now to obtain the estimates for J x  (t) | and [ Jc (/) | in (2.5). 
The estimate for | x  (t) | requires (5.4), just as in § 5, and to establish 

this we note that (2.2) implies that

(6.5) x +  {(1 — j j l ) a +  [x<j; (%)} x =  R

where, because of the boundedness, just established, of | oc if) | by a D, the 
function R satisfies

R I <  D (I ^ I +  I) •

Thus if we multiply both sides of (6.5) by x  and integrate we shall have, 
since # is co-periodic and (1 — (x) a +  fx<|> >  a, that

CO

a
/0

x * d t < D x  I I x  I dt +

{ ( / * ■ * ) * ( / - .  d , y + (/* ■ * )■ " }
0 <j 0

< D . ( J  x2 d/j 1

by (5.6) which has just been established for co-periodic solutions of (2.2). 
Hence

COj x 2 dt <  D
0

as before and the estimate (5.7) then follows as in § 5 for our solution x  of (2.2).
W ith the boundedness (each by a D) of | x  (t) | and | x (t) | established, 

the estimate (5.8) can now follow, for our solution of (2.2) exactly as in § 5, 
and so also the boundedness of | x (f) | by a D for arbitrary t e  [o , co]. This

concludes the verification of Theorem 2 with zx =  — a D f2 (see (6.4)) when 
^ is subject to (1.7). ^

To tackle the case ^ subject to (1.8) we had pointed out in § 2 that we 
should deal with the equation (2.2) with a replaced by (•—ß). The effect of
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CO

the replacement on the estimate for J  i:2 dt  is merely to replace a“1 in (6.2)
0

by ß-1, as is easily seen by multiplying both sides of (6.1) by (— 1) and 
noting that — p/yT* (y) >  p.ßy2 so that then

( I - d t >

CO

x2 d t .

Thus the estimate (6.3) comes through here with ß in place of a and the 
rest of the proof when is subject to (1.8) can now follow from that point 
exactly as before.

This completes our proof of Theorem 2.
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