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Equazioni differenziali ordinarie. — Further results on the exist-
ence of periodic solutions of a certain third ovder differential equation.
Nota di James O.C. EzEeiro, presentata® dal Socio G. SANSONE.

RiassunTo. — L’Autore considera Pequazione % + ¢ ()% + @ (x) £ + f(x) = 5 (?)
con % (#) funzione periodica di periodo ®, e con ipotesi, non molto restrittive, su ¢ (%),
® (), f(») dimostra l’esistenza di almeno una soluzione periodica di periodo « in due
casi.

I.

Consider the third order differential equation
(r.1) Ftal+oe@i+f()=20

in which @ is constant and ¢,f,p are continuous functions depending only
on the arguments shown and p is w-periodic in #, that is p (# 4+ o) = p ()
z

for some o > 0. Let ® (x) = fcp (£) d&. There is a result in [1] by Reissig

0 .
which shows that if the following conditions hold:

(i) a0, (@) |z f@)|—o0 as |x|—o0, (i) f(x)sgnx =0 (|x|=>)),
(iv) || ®(x)| >0 as || >oo0 and (V) fp(t) df = o,
0
then (1.1). has at least one w-periodic solution. The restrictions (i) and
(iv) here were removed in a subsequent paper [2] (See Appendix 3).
We propose, in the present paper, to examine the above result with the

following weaker conditions on f, ¢ in place of Reissig’s (i) and (iv)
respectively:

(1.2) lf @) | <A x|+ A,
(1.3) |®(#) | <B,|x]|+B,,

for all x, where A; >0,B; >0 (¢ = 1, 2) are constants with A, , B, suffi-
ciently small. The investigation will, furthermore, be concerned with the
more general equation

(1.4) E+YDE+e@E+/®) =20

(*) Nella seduta del 10 dicembre 1977.
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in which the coefficient {, not necessarily constant, is a continuous function
depending only on #: but our other main objective is to identify certain
equations (1.4) for which, subject to the conditions ((iii) and (v) above):

(1.5) f@sgnr=o0 (lx|=1)

(1.6) jp @Hdt=o0

the use of just ome (only) of (1.2) or (1.3) would suffice for the existence of
an o-periodic solution. The position is summed up more clearly in the
following two theorems for (1.4) which will be proved shortly:

THEOREM 1. Given the equation (1.4) suppose that ¢ , f and p are subject
to (1.3), (1.8) and (1.6) respectively. Then there exists a constant ey > O such
that if By, L e, then (1.4) admits of at least one w-periodic solution for all
arbitrary § (%).

Note here the absence of a restriction on {.
The next theorem covers the special case corresponding to @ %~ o0 when
results. are specialized to (1.1).

THEOREM 2. Grven the equation (1.4) in which p is subject, as before,
to (1.6), suppose that [ is subject to (1.2) and (1.3) and that

(1.7) Y()=a>0  forall y

or, otherwise, that

(1.8) VY <—B<o foral y

Sfor some constants o ,P. Then there exists a constant e > O such that if
Ay Zley then (1.4) admits of an w-periodic solution for all arbitrary ¢ ().

Observe that, when specialized to the case ¢ = constant with / bounded
Theorem 2 here gives a significant improvement on the results in [2], [3]
and [4] for the same equation.

2.

The method of proof of either theorem will be by the Leray-Schauder
technique, just as in [1] except that for our purpose it will be convenient
here to consider the parameter-dependent equation in the form:

(z.1) ¥+uh@) & +pe@)r+0—pax+uf(x)=up@®
for dealing with Theorem 1, and in the form:

(22) &+{0 —0)p+ud @} F+pe W+ (1 — ) ar + wf () = pp ()
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for dealing with Theorem 2 when ¢ is subject to (1.7). The case when ¢ is
subject to (1.8) can also be handled with the same (2.2) but with « replaced
by (— B) as will be explained in § 6. Here in (2.1) ¢ is an arbitrarily chosen,
but fixed positive constant. The constant ¢, in (2.2) is also positive, but its
value is to be fixed (sufficiently small) to advantage later (see (6.4)).

The equations (2.1) and (2.2) reduce to the same (1.4) when & = 1 and
to the constant-coefficient equations:

(2.3) X+caqx=o0
(2.4) ¥+taktgx=o0

when @ = o0. It is easily verified that neither of the auxiliary equations
corresponding to (2.3) or (2.4) has a purely imaginary root. Thus it will now
be sufficient, as in [1], for our proof of Theorem 1 or Theorem 2 with ¢
subject to (1.7) to establish merely that there is fixed constant D > o, whose
magnitude is éndependent of p, such that any w-periodic solution x () of
(2.1) or (2.2), corresponding to 0 < < 1 satisfies:

zs) 2@ |<D,[#2@®|<D and |#@®| <D (r<t<7+ o)
for some 7.

3. NOTATION

Let A; = max |2 (¢) |. In what follows here the capitals D ,D,, D, ---
0<t<a

are finite positive constants whose magnitudes are independent of the para-
meter u and, indeed, in the context of Theorem 1 depend only on ¢, A;, B,,
¢,¢ and £, and, in the context of Theorem 2, on ¢,,A;,A., ¢,¢ and /.
The D’s without suffixes attached are not necessarily the same in each place
of occurrence but the numbered D’s: Dy, D,;, - retain a fixed identity
throughout. »

4. SOME PRELIMINARY RESULTS

”

As we shall be dealing extensively here with integrals such as J 2% de,

~

J x*de, f &2 d¢ taken over time intervals of length @, we might as well note
T4+w To+®

that if x is w-periodic then fxz d?z = | #*d¢ for arbitrary © and =, since

T0
T+

(]
either integral equals {x2 dz if x is w-periodic. The same is true of f;ffz ds

0 T
T+

and f &2 de.

T
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We shall require specially the use of the following two subsidiary results:

LemMA 1. If x = x (f) is continuous and o-periodic in t then
T+o T+

G4.1) {z’:z dr < -;— ? n‘zfa'é? dz.

Proof of Lemma. Let x have the Fourier expansion:

(=
@“.2) x ~ X, (a,c0s 2 w172 + &, sin 2 w1 77)
r=0

so that # and & in turn have the corresponding expansions:

00
t ~270! 2 — 7 {a, sin (2 T~ 7t) — b, cos (2 T~ 72)}
r=1

o .
& ~—4mtot Y, 2 {a,cos (2 ma1rt) + b, sin (2 mo172)} .
r=1

We ‘have, in the usual manner, from the expansion for # that
L XN ‘
o0
(4-3) fﬂ&z dt=27" 0" 21 7 (> + &7)
T =
and from the expansion for & that

T4

f #dt=38n'e™ 3 (a7 + &)
r=1

o0
< 81c4m_3272(af + &
r=1
T4
§4n2m‘2f£2dt

T

by (4.3), which proves (4.1).

LEMMA 2. Let x = x(t) be an w-periodic solution of (2.1) or of (2.2)
corvesponding to o < p < 1

T+w ‘ T+0 .
(4-4) fx*dtsD§+D§fﬂz”dt

T T

Jor some Dy,D,.
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Proof of Lemma. Let x have the Fourier expansion (4.2) so that then

T+

(4.5) fxz dt = ay + 2, (a7 + &)
r=1

T

whether or not x is a solution of (2.1) or of (2.2).
If in particular x (#) is a solution of (2.1) or of (2.2) then we have, in
view of (1.6) on integrating (2.1), (2.2) that

(46 [t —wax tweya—o G=1,2).

Since ¢; >0 (/ =1, 2) and [ is subject to (1.5) it is clear from (4.6) with
o< p <1 that

(4‘7), |2 (o) | < 1 | for some 7, such that o < 7, < .

Now the coefficient a, in (4.2) is given by

(o]

ay = m—lJ x () ds
0
Totw
= m-IJ x(¢)dz,

o

since x (¢#) is w-periodic in z  Now

Totw T0+e Tote

jx@w=m®f~fm@¢,

= 0 (7o) NJ t# (£) d

To

so that, by (4.7),

Toto

ool <1+ o7t (o2 ar

%o
and therefore, since 0 < 71, < o,
Tot+o
lao| <1 +D [ |2@)|de

]
To+w
3 12
<1+D ( } 2 d,:)

To
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by Schwarz’s inequality. Hence
T+

(4.8) an §D2(1 +f:z2 dz)

To

for sufficiently large D,. As for the term under the summation sign in (4.5)
it is clear by comparison with (4.3) that

T+

(4.9) i (& +8) <D f #dr.
r=1

T

The result (4.4) now follows on combining (4.8) and (4.9) with (4.5).

5. PROOF OF THEOREM I

Let now x = x (f) be any w-periodic solution of (2.1) with o <p <1
and ¢ subject to (1.3).
Define I, >o0,1; =0,I, =0 by:

w

1§=fx2dz , Ii:f;zzdt , 13:{5&%;.
§ ; o
Since
fxmz:m-—fxzdz and fcp(x);tzdt=;eq)(x)—fa'c‘(l)(x)dz

we have, on multiplying (2.1) by # and integrating, that

(5 (0]

B fomedr=—u[mow,

0 0

so that, by (1.3) and since o <p 1,
(5.1) I§§B1f|x||o'éldt+{Bzf]a'é[dt+A3f[y'cidt:
0 0 o

<B I, I, + o®2(B, I, + A, 1),
by Schwarz’s inequality. But, by (4.4),
(5.2) I,<D,+D; L
<D;(r + 1,
by (4.1), for sufficiently large D;. Thus (5.1) also implies that
‘ I3<Dy;B,I; + (B, Dy +-D) I,
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by (4.1); and hence if B, is fixed, as we assume henceforth, such that
(5.3 B, < }D;",

then
13 <DI,.

from which it follows at once that

(5.4) I <D,
and then also, by (4.1), that

(5-5) I <Ds.

Now a combination of (4.7) with the identity:

@ =x (%) + fx (s)ds

shows that
To+®
max |x ()| <1 —i—f[;f:(s) [ds
0<t<o
70
To+w
~ ya
<1 4 ol (J 2 (s) ds)
70
by Schwarz’s inequality. Hence, by (5.5),
(5.6) 2@ |<Dg=1+6D® (0<t<w).

Next, since x (0) = x (») it is clear % (7)) =0 for some 7 € [0, ]. Thus
we have, as a result of the identity:

¢
2@ =x(z) —i—fo'c'(s)ds,
that '
T+
max [2(@) | < | |&(s)]|ds
0<i<m
71

T+
1/2

<ot ( [20 as)),

T1
by Schwarz’s inequality, and therefore, by (5.4), that
(5.7) 2@ <Dy =D (0<t=<0).

34. — RENDICONTI 1977, vol. LXIII, fasc. 6.
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It remains now to establish the last estimate in (2.5). For this let us note
from (2.1) that # = Q, where by virtue of (5.6) and (5.7) and the boundedness
of p the function Q satisfies

QI =Ds(|&1+1).

Thus if we multiply both sides of (2.1) by # and integrate we shall
obtain that
T+ T4+ T4

faaZdngSf|5e||5a|dt+Dsf|5e|dt

T

T+ T+ T+o
2 1/3 1/2 1/2
co(feaf([ea)n(fru)

by Schwarz’s inequality. Hence, by (5.4),

T4+w T4+

12
fﬁzdz‘SD (fic'zdz‘)
which in turn implies that
T+

(5-8) f&z dt < D,.

T

Now, since £ (0) = % (w) it follows that # (1) == o for some 7, € [0, @]. There-
fore we have, from the identity:

(0= 55’(12) —l—fﬁ(s) ds,

that

T3+

12
max | & () | < o2 (fﬁz (s) ds)
0<t<e

T2

<D
by (5.8). ‘
This completes the verification of (2.5) for all w-periodic solutions of (2.1)
with o< p < 1 and Theorem 1 now follows with g, = 3 D5 (See (5.3)).

6. PROOF OoF THEOREM 2

We deal first with the case ¢ subject to (1-7). Let then x = x (¢) be
any w-periodic solution of (2.2) with o < u < 1. The whole substance of our
proof, as pointed out/in § 2 will be to establish (2.5) for x (¥). With the
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groundwork laid out in § 4 the pattern for the proof of (2.5) here is almost
as in § 5 and we shall therefore skip any inessential details.

Indeed the main difference between our procedure here and the proce-
w

dure in § 5 is in the method for estimating fﬂl'z dz. This time it is conve-
°

nient to multiply our parameter—dependent equation (2.2) by x (not by

# as in §5) and then integrate. Since

‘xo?dz‘:xa’é—%fcz , jxa'édz‘:x;t—];tzdz‘

~

%fﬁcp(ﬁ)dﬁ=xcp(x);& , fx¢(x)xdt=x‘?(x)—~"x‘l’(x)dt

y
where ¥ () = f ¢ () dv, and x is w-periodic, the integration leads at once
0

to the result:

(o] (0]

6.1) (1—wa {9’02 dz + ;J.JN;E‘F (®)ds =

=f{1 — W) 62 + paf (x) — pap) de.

By (1.7) ¢ =« and therefore also y¥ (¥) = ay?® for all y.
Thus the inequality (6.1), if (1.2) holds, implies that

[ [0} (0]

(6.2) fﬂ?zdtgorl(fg+A])fx2dt+Df|x|dZ
[}

0 0

[0

- 12
< ot (e —\—Al)faﬂdz‘—}—D (fxzdt) )
o ®

by Schwarz’s inequality. By (4.4) and (5.2) this implies in turn that

14} «

r . . ~ ' ,t:) 1/2
(6.3) detﬁcx—l(ﬁz—l«A,)D?J #2df+ D {(chgdz) + A+ 1}.
0 S0 i

0

Hence if for example ¢, and A, are fixed, as we assume henceforth, such that

(6.4) 0< o< —;— oD, A< % oD;
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then we have from (6.3) that

y ":) 1/2
fzzdng {(J;zzdz) + 1}
0 0

which, in turn leads to (5.5) and therefore to (5.6) as in § 3.
It remains now to obtain the estimates for |# () | and |%(#) | in (2.5).

The estimate for |# (¢) | requires (5.4), just as in § 35, and to establish
this we note that (2.2) implies that

(6.5) FH{0—watub@)F=R

where, because of the boundedness, just estabiished, of |x(#) | by a D, the
function R satisfies

IRI=D(|#|+1).

Thus if we multiply both sides of (6.35) by & and integrate we shall have,
since x is w-periodic and (1 —p) « + pd > «, that
ocfjézdlSD(J|:t||5c'|dt—l—f|5é|dt)
é o 8

© (5]

(fea)(es (fou

- 2
<D (fx2 dz‘)
]

by (5.6) which has just been established for w-periodic- solutions of (2.2).
Hence

IA

(8]

f;e2dt_<_D

[}

as before and the estimate (5.7) then follows as in § 5 for our solution x of (2.2).

. With the boundedness (each by a D) of |+ (¢) | and | % (¢) | established,
the estimate (5.8) can now follow, for our solution of (2.2) exactly as in § 5,
and so also the boundedness of | % (#) | by a D for arbitrary #¢ [o, o). This

concludes the verification of Theorem 2 with ¢, = ~ oDi? (see (6.4)) when
¢ is subject to (1.7). 4

To tackle the case ¢ subject to (1.8) we had pointed out in §2 that we
should deal with the equation (2.2) with « replaced by (—f). The effect of
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(57

the replacement on the estimate for J #%dz is merely to replace a~! in' (6.2)
0

by B~%, as is easily seen by multiplying both sides of (6.1) by (— 1) and

noting that — wy'¥ (») > pBs® so that then

«

(1—u)ﬁofza“dz—gfx‘lf'(z)dtzﬁofo'czdt.

0

Thus the estimate (6.3) comes through here with B in place of « and the
rest of the proof when ¢ is subject to (1.8) can now follow from that point
exactly as before.

This completes our proof of Theorem 2.
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