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Fisica m atem atica. — Non-linear high-frequency waves in R ei a- 
tivistic Cosmology <* (**)>. Nota di A n g e l o  M a r c e l l o  A n i l e , presen­
tata dal Socio C . C a t t a n e o .

RIASSUNTO. — Si studia Pevoluzione di onde acustiche di ampiezza finita nel fluido 
cosmologico, con il metodo delle onde asintotiche di Choquet-Bruhat.

Si calcola il tempo caratteristico per la formazione delPurto e se ne esplorano le conse­
guenze cosmologiche.

i .  I n t r o d u c t io n

The gene ration of acoustic waves in the cosmological fluid is an impor­
tant step in the process of galaxy formation [i ]. These waves are thought 
to initiate from perturbation in the “ radiation era ” [i], when the universe 
is dominated by a radiation fluid obeying the equation of state p =  1/3 p. 
Because at this stage the Jeans length is of the order of the horizon size (XH), 
the perturbations with wavelength X Xh oscillate throughout the radiation 
era, whereas those with X >  Xh grow indefinitely. The short wavelength per­
turbations (X<̂ XH), which are the acoustic waves, are then severely damped 
by photon viscosity ([1], [2]) until the time of recombination [3]. The final 
masses associated with these perturbations would represent the seed fluc­
tuations where from clusters of galaxies formed. This picture derives from an 
analysis of the Einstein equations in the presence of a dissipative fluid, by 
linearization around the unperturbed Robertson-Walker solution. However, 
it is well known that the non linearities of hyperbolic equations cause a distor­
tion of the signal as well as a breakdown of the solution after a certain charac­
teristic time [4]. In the case of hydrodynamics this is usually interpreted as 
the time of shock formation [5].

Therefore it is of some interest to investigate the effect of non linearities 
on the previous picture of the development of perturbations in an expanding 
universe.

The plan of the present paper is the following. First of all we study, 
using the method of Choquet [5], high-frequency non linear acoustic waves 
in the Robertson-Walker metric. Secondly, because in the case p =  1/3 p, 
a special class of exact non linear solutions of the fluid dynamical equations 
is available [6], we check the validity of Choquet’s approximation method 
in this particular case.

(*) Work partly supported by a NATO senior fellowship at IOA, Cambridge Uni­
versity, U.K.

(**) Nella seduta del 18 novembre 1977.
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In Section 2 we briefly review the method of Choquet [5] for treating 
non-linear high-frequency waves. Then we apply it to the equations descri­
bing the cosmological fluid. We study in detail the distorsion of the signal 
and obtain an explicit expression for the characteristic time of breaking of 
the solution.

In Section 3 we discuss in detail the case of a purely radiation fluid and 
we compare the approximate solutions with the exact ones describing simple 
waves [6].

N o ta tio n  a n d  Co n v e n t io n s

Space-time is assumed to be a pseudoriemannian differentiable manifold. 
The metric signature is taken to be — 2. Small latin indices run from zero 
to 3. Greek indices run from 1 to 3. Capital latin indices run from zero to N. 
Va represents the covariant derivative operator.

S e c t io n  2

The method of asymptotic waves for hyperbolic non linear p.d.e. has 
been developed by Y. Choquet [5] and generalizes to the non-linear case the 
well-known W. K. B. expansion technique [7], [8]. In brief, the essence of 
the method is the following. One considers the quasi-linear I st order system:

(0

LJ (U) =  , U) ^  V  . U) =  o

I , J =  o , I • -, N ; a =  O , 1 , 2 , 3

with, # G V4 , V4 being a 4-dimensional differential manifold.
Also one supposes that U e ^  (V4) , Aia e ^°° (V4) , 9  e ^°° (V0). Fur­

thermore one assumes that Aia and 9  are analytic functions of U in the 
neighbourhood of some U0. Then we can write:

with

A{° (* , U) =  A? +.A& (UH — U H) +  • • •(0) (0)

ÿ  =  £J +  4 (UH— U h)H-----
( 0 ) ( 0 )

e!
> II Ai° (x , U0) : II^

 §

— a AJia u
(0)

IIMH — aUH
3 bS

l u 1 u
(0)
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Let <p 6 ^°° (V4) , co e R+, £ =  co<p. One seeks a solution to eq. (1) in the 
form of an asymptotic wave [5]:

(3) u * =  S  “ “*U , ( * f Ç)
q= 0 <0

where U is a solution of the unperturbed equation A{a da U1 +  ^  =  o. In 
(0) (0) (0) <0>

order that the formal series (3) represent an asymptotic wave (1), one obtains
the following necessary conditions:

i) the vanishing of the characteristic determinant,

(4) A (# , /) =  det (Ai“ 4) =  o 

where la =  <p>0.

ii) let h] and Ii the left and right eigenvectors of the matrix A{“ la.
One can write

(5) U1 (* . S) =  V! (x , Ç) Ji (x) +  V1 (at) .

In the following we shall always take V1 (.x) =  o.
Then one obtains the following propagation equation for V1:

(6)

where

[AA°a0V1 +  aV1V; +  ßV1 =  o

v;
3V,
"9C

3V,
dxa

uAa =  Hi hl A{“(0) a =  AH /ak'hjk*'

ß =  {Ai“ 3a hl (Ail 3a U 1 +  6l) .
(0) (0)

Eq. (6) is a ist order quasi linear p.d.e. and can be solved by integration of 
its bicharacteristic system.

iii) linear p.d.e. for the higher order terms U , q >  1 which are not 
. . . .  <0of interest to us in this contest.

We remark that eqs. (4), (5) appear also in the theory of weakly discon­
tinuous solutions of (1), [9].

Now we apply Choquet’s method to the equations of relativistic hydro­
dynamics. In its general form this was also attempted in Choquet’s paper. 
However for the cosmological applications it is more transparent to start 
directly from the basic equations (4), (5).

25. — RENDICONTI 1977, voi. LXIII, fase. 5.
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The equations of relativistic hydrodynamics are:

(7a) (p +  p )u aVaub — =  O

(7b) ua da p +  (p +  P) Va ua =  o

where ua is the normalized 4-velocity uaua — 1 , ya& is the projection tensor 
— gàb — ua ub̂ p  and p are the pressure and the energy-density respectively. 

We also assume the adiabatic state equation:

(8) p =  yp , o <  y <  1 .

The background solution of (7a, b) is taken to be the one appropriate to a 
Robertson-Walker universe, with zero spatial curvature, i.e. in comoving 
conformal coordinates.

(9) d^2 =  R2 (7)) [d7)2 — V  dx^ dx*]

with

ua =  (0) , 0 , 0 , 0 u1

R
o
o
o
P

-  (0) _

Eq. (4) then yields:

(10) (/0)2- y S " v/ , / v =  o

which is the well known dispersion relation for acoustic waves. Also it is
3Aeasy to see that 7  ̂o and therefore no caustics develop and the previous

formalism is perfectly adequate (absence of linear shocks, [9]). From (10) 
with a simple rotation we can always take L 7  ̂o , L =  /„ =  o, hence
/o == =b VŸ /  with /  =  I a I.

We take for the right and left eigenvectors of Aia la

o
r
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If we write Ka =  [JiAa we find

(12) Ka =

Also we find

(13) .« =

( h )

Then eq. (6) gives:

2 (1 +  y)
R P — f ,  1 , 0 , 0 .

(0) L *0 J

2 p (I +  y) (y — 0
„ _  «0 /

Ry 0

/„ (1 +  y) p R (3 y — O
B = _______ 25___________P /y R2

(I S) — 3o V, d= Vy 9i +  I (y ■—i)V 1Vi + ...3 Ï - 1 Ä  v . =
R Vx =  o .

For y =  1 eq. (15) is linear and we recover the exceptional waves of Lax
([5], [9])-

The bicharacteristic system of eq. (15) is:

dv)
der

dx1 dx2 dx2
T  1 y ; —  =  ^ -  =  oda der da

(16)

where a is a parameter along the bicharacteristics. We must now specify the 
initial conditions for the system (16). We take the hypersurface 2  : y) =  t)e 
as initial hypersurface. We assume that:

(17)
v . Is =  w , (y , IX) , y e  s

S Is — (A •

It follows:

(18a) Y] =  a +  t]e ; x1 =  =p f yc ; x2 =  x 3 =  o

(18b)

(18c)
TQe

dV



38o Lincei -  Rend. Sc. fis. mat. e nat. -  Vol. LXIII -  novembre 1977

We are now able to evaluate the critical time for the formation of the shock. 
We consider separately the two cases: y = 113 ] y ^  113- In the case y =  1 
no shock is produced.

N I
«) Y =  y

We assume for the initial wave’s profile on 2

(19) Wi =  — B sin [x , B >  o , B =  const.

Then (18c) yields:

(20) Ç =  — e sin [X

where

e — V)E) >  o .

Eq. (20) can be solved for ^ if

9(x =  I — e cos [x ^ o

which can be violated when e =  1. The critical time r\c is then defined by 
e — I. One has

^  7lE ,2/B '

Also, we can write:

P
0)
p

(0)

/  Sp \  . I +  y  /  -D •=  I I sin [x =  - — —— — B sin jx
\  P /  T A>

where —— denotes the amplitude of the density contrast. It follows: 
P

(21) 6
^c— ì̂ E =  ~ =

y 3 / ( ì p _\
P /E-

Therefore, as it was to be expected, i)c decreases as the frequency and the 
initial amplitude of the perturbations increase.

ß) Y
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2
In this case R =  Ly)3y+1 L =  constant and we assume the same initial condi­
tions as in a). It follows

with

(22)

E, =  [I —  e sin [L

(I — y) (i — 3 r)
0  +  3 y)

B/Y)i+Sr [y)1-8y _  vji-sr]

whence, from the condition e — 1, one finds

2 2 
^  =  +

1- 3y
(1 +  3 ï ) ^ e+8y

y ( ! — y) (r — 3 t) y Y
I

7 *p_\
P /E

which shows the same qualitative behaviour as (21). We remark that for 
Y 0 » -> 00 •

Now we are able to discuss the distorsion of the signal. This arises because 
we express p. as function of E, by inverting eq. (20). The latter is the well- 
known Kepler equation of Celestial Mechanics [10], and its solution is, for 
e <  I (i.e. t\ <  •/)„):

(24) P- =  \  +  2  2 sin qE
0= 1  ^

where ]q is the Bessel function of order q.
Therefore we see that an initially sinusoidal profile, Wt =  — B sin fi 

is subsequently distorted by the creation of the higher order harmonics. Then 
one has:

(25) V, =  - B 2 Jg (ge) 
Ç

sin (qE) .

As an example we treat the case y =  1/3. Then we obtain for the density 
perturbations

(26)
Po r  =
p

(0)

12 y3—  I M e )
i 0) — %) ËA. q

sin (qE)

which shows how the amplitude is transferred from the low to the high-fre- 
quencies.

For the short time intervals, 7)— y)e < r\c — y]E, one has e < I, hence:

L ( ^ )
qq eq 
2q q\

It follows that the amplitude of the mode with q =  1 is approximately con­
stant, whereas that of the higher modes, q >  1, increases as (73 —  tqe)®“1.
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S e c t io n  3

In the particular case y =  1/3, Liang [6] and Jones [11] found exact 
solutions to the hydrodynamical equations in the form of simple waves. These 
are one-dimensional solutions such that the Riemann invariants are constant 
throughout space-time [12].

In our formalism these solutions read, for propagation along the x-axis:

v  =  / ( p  ± )

/  I + » \ ± - £ = r
P =  P I --------- I(0) A I V /

V‘± = x -----P̂  C> (y\ — v)E)
I db cs v

where c8 is the sound speed and v is defined by:

(27c!) ua =  —  (1, v , o , o) .

(27a)

(27b)

(27c)

In order to compare Liang’s results with our ones we must assume v < 1, 
because our method is essentially a perturbative one. For the sake of sim­
plicity we consider outgoing waves. Then, from eqs. (27a, b, c, d) we obtain, 
up to terms of order o (v2)

(28) _ ±

V3
v

which! coincides with our result for 

Furthermore (27c) yields:

4

y  3  ■

(29) JL. = X +  (7) — VJe)-----— v (kj — y]e) +  O (v2) .

Let us now consider an initially sinusoidal profile for vy

v =  -— B sin (/fi) .

If we write \  =  / [x +  cs (73 — v))E] , [x =  /fL then (29) yields:

5 =  I* ■ B/t] sin [x

which coincides with eq. (20) for / =  — /B .
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The critical time for the formation of the shock, as computed by Liang 
and by Jones, is:

^  7lE 4 a/B

2 I 2with a = -----y , ^ ,  7— . Since B ^  1, then a ^  — , and one recovers the
3 /  +  B/y 3 3

same order of magnitude as our result (21).
The above considerations show that Choquet’s method provides a good 

approximation to the exact solutions. We conclude with an interesting appli­
cation to Cosmology. For perturbations corresponding to small galactic masses, 
l>  io3. Furthermore, since we consider the radiation era, 73 e 55 io~3. Hence 
Ay)c == y)c — 73 e <  y]e* We see that high-frequency perturbations decay rapidly 
within an expansion time, because in our cosmological model the expansion 
time 7]exp =  7]. It is convenient, at each time, to define a critical fluctuations

is the horizon
i p

p

until the equi-
partition time 73eq. After this time no perturbation can degenerate into shocks 
because y->oin  the matter era. It follows that, if a perturbation of comoving

wave-length Xj si such that at the equipartition time 73eq,
\ P /eq. \  P /eq

then this perturbation can never degenerate into shocks. The critical fluctu­
ation density at Yjeq is

where X is the perturbation’s comoving wavelength and Xh

size at time 73. Then, at time 73, those perturbations with

degenerate into shocks..
On the other hand we known that the radiation era lasts

/_ V |*  =  =  /  M y /3
\ P /eq. XH \ Mh /  eq

where M is the mass associated with the perturbation and Mh is the horizon 
mass. The final result is the following upper bound for the amplitude at y)eq 
of those perturbations which do not degenerate into shocks:
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