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Equazioni differenziali ordinarie. — Controllability of Perturbed
Nonlinear System. Nota® di JERALD P. DAUER, presentata dal Socio

G. SANSONE,

RIASSUNTO. — Si trova una condizione sufficiente per la controllabilitd forte di sistemi
non lineari di controlli.

I. INTRODUCTION

The controllability of various nonlinear control systems has been studied
by a number of authors. One type of method used in many of these studies
has been perturbation techniques (for references see [1]). In particular, the
results of Dauer [1] give sufficient conditions for controllability of -perturbed
quasi-linear systems.

In this paper we use a nonlinear perturbation approach to obtain suf-
ficient conditions for controllability of the more general nonlinear system

(1) =g, 2)+B@,utft,x,u).

Our procedure first characterizes appropriate solutions of (1) using Alekseev’s
variation of parameters formula [3]. This method was also used by Lukes [2]
to obtain results for bounded perturbations f (¢, x,#) of the base system

(2) 2=g@¢,x) +Bl,x,u)u.

He used a fixed point argument for an appropriate nonlinear operator defined
on a Banach space. Our approach is similar, although our operator differs
in an essential manner from that used by Lukes allowing a more general class
of perturbations.

The sufficient conditions for controllability which we develop for system (1)
are for a class of nonlinear perturbations f (¢, x, %) which satisfy a ‘ less
than linear growth ' condition, a condition which all bounded functions satisfy.
The motivation for a condition of this type on f (¢, x, #) can be seen from
the discussion and linear examples of Lukes [4]. The conditions on the base
system (2) are that it satisfy a strong controllability condition and that | 3g/ox |
and | B | are bounded. Completely controllable linear systems are examples
of such base systems.

(*) Pervenuta all’Accademia il 6 ottobre 1977.

23. — RENDICONTI 1977, vol. LXIII, fasc. 5.
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2. CONTROLLABILITY RESULTS

Consider the nonlinear control system (1) for ze I = [#,, #,] where xe E»,
Euclidean #-space, #€ E™ and g, B and f are continuous functions of appro-
priate dimensions. We say that system (1) is completely controllable if for
any x,, ;€ E™ there exists a continuous control function # (¢) such that the
solution of

3 =g, 0) FBEDu®) ¢, x,u@)

x (2y) = x,

satisfies & (¢) = x; .
In order to obtain a usable form for the solution of (3) we assume that
£, B and f satisfy the following basic continuity and boundedness condition:

(C1) Let g(z,x) be twice continuously differentiable in x and once
in#, B (#, x) be once continuously differentiable in x and | 3¢/ox | be bounded
on IXE®",

Then there exists a unique solution y (¢, s, %) of
y=g09)
y(s,5,%) =2
defined on I [2, 3]. It follows that the corresponding Jacobi matrix function

3
z@,s,x):i%’_ﬁ

is bounded on IXIXE? and is the fundamental matrix solution of

9z _ [9g(f,y(¢,s,x)>]z

x Ay

such that Z (¢, ¢, x) is the identity matrix. By Alekseev’s variation of para-
meters formula [2, 3], for every continuous (control) function # (¢) the unique
solution of (3) is given by V

(@) x(t):y(t,z‘o,xo)+fZ(z‘,s,x(s))B(s,x(s))u(s)ds

—i—fZ(z‘,s.x(s))f(s,x(s),u(s))ds.

In particular, it is easy to see that a solution x (¢) of (3) satisfying x () = #;
corresponds to the control function defined by

(5) u(@)=B*@,x@O) 2,2, x@)S(x,u) p(x, )
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where

S0 =[vOr o,

VO =Z@,t,x@)B¢,x@®),
p(x,u)=1x—y,t, %)

—fZ(tl,t,x(t))f(t,x,(t),u(z‘))dz‘,

here * denotes matrix transposition.

We now determine conditions on system (1) which guarantee that for
every pair of points x,, x, there is a pair of continuous functions x () , # (¥)
which satisfies the set of integral equations (4), (5). This result extends those
[2] for system (1) by eliminating the boundedness hypothesis on the partial
derivatives of B and by enlarging the class of perturbations. Our proof follows
that used by Dauer [1] for perturbations of quasi-linear control systems.

We say that system (2) satisfies a stromng controllability condition if there
exists a number A > o such that for any pair of continuous functions x (¢) , % (¢)
and all we E* we have

w*S (v, w)w > |w 2.

For such systems it follows that the symmetric and nonnegative matrix
S (x, #) has an inverse which is bounded

1S1(x, %) | < 1/

independently of the functions x (¥), # (¢). For linear systems this reduces
to the standard necessary and sufficient condition for complete controllability
developed by Kalman, Ho and Narendra [5]. It follows from the result below
that systems ‘(2) which satisfy a strong controllability condition are completely
controllable provided g and B satisfy condition (C 1) and | B (¢, %) | is bounded
on I X E” This extends the results of Davison and Kunze [6] for this system.

THEOREM. Suppose that g, B and f satisfy the basic continuity and bounded-
ness conditions (C 1) and that | B (¢, x) | is bounded on 1XEr. If the base
system (2) satisfies a strong controllability condition and the perturbation f
is such that

im G20
lewl>e | (&, )]
uniformly for te 1, then system (1) is completely controlliable.

Proof. Let C denote the Banach space of continuous functions (x , %): I —
— E?»X E™ with the usual sup norm,

&, @)l =sup{{x@,u@)|:2eT}.
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Fix xy, ;€ E® and define a continuous operator T on C as follows: for each
(x,u)eC let T (x, %) = (w,v) where

©) v =B*@,xO)Z*,t,x@))S 1 (x,u) p(x,n),
) w@) =y, %) —I—IZ‘(t,s,x(s))B(s,x(s))v(s)ds

+ [z s 267626, w6

Take
k= max {|Z|-| Bl —2), 1},
¢ = 4 kI B*I| Z*|P (4 —7o)IA,
dy =4 £ BN Z* |- |2y —y (1, 20, %0) | N
& =4|Z||(t,—1),
dy=4 |y (tist,70) |,
¢ = max{¢, &},

d = max {d,, ds} .

It follows from the growth condition on f [1, Prop. 1] that there exists a con-
stant » such that if |(x,#) | <7 and se I then

clfGs,x,n)|+d<r.

Letting C, = {(x,#)eC:||(x,%)]] <»} we have that if (x,#)eC, and
T (x,%) = (w,v), then

l2ll < [ +asup | /G5, 2, () e d

<rla k) <rl4.
Hence

| < dola + £l v]] +(52/4)s;:13lf(s,x(S),u(O)I
<r7l4+7/4.

Therefore, T maps C, into itself. In particular, T maps the convex closure
of T [C,] into itself. Let W, be the set of all functions  which are defined
by equation (7) for (x, #)e C, with v (s) defined by (6). Since f, and therefore
2, is'bounded on C, and Z, B, S-! and g are bounded, it follows that W, is
equicontinuous. Therefore, the range of the product function B* Z* defined
on T[C,] is equicontinuous. Hence, equations (6), (7) show that T [C,] is
equicontinuous and the Schauder-Tychonoff Theorem [7] shows that T has
a fixed point in C,. This fixed point (x,2) of T is a solution pair of the set of
integral equations (4), (5). Hence # (¢) is a control function whose corresponding
solution x (¢) of (3) satisfies x () = x,. This proves the result. [J
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The condition that the base system (2) satisfy a strong controllability
condition is a difficult condition to verify for nonlinear systems in general.
However, Davison and Kunze [6] have developed several examples of such
systems. In particular, their results [6, Theorem 4] with the above theorem
give the following.

COROLLARY. Consider the system

(8) T=A¢,x)x+B@,x)u+f¢,x,n
where
4,1 2,5 O see O o
3,1 Q2,5 d2,3 *** O o
A= s
n—2,1 tt @pam1 O
Zp-1,1 *tt Opam-1 Cpm
_ @pa R 2 | Zum  _
0
(o]
B = .
O
b

The system (8) is completely controllable provided the following conditions are
satisfred: :

1) The first n — 2 partial derivatives of A (¢, x) and n — 1 derivatives
of B (2, x) exist for te 1 and for xe E,

iy |A@,x)]| and |B (¢, %) | are bounded on IXE?,
itiy Zhere exists a constant ¢ > o and a point t, €1 such that
B (t, %) = ¢, a0 (t,2) = ¢
for all xe E® and i = 1,2, -+, —1,
iv) f(@t,x,2) is once continuously differentiable in x and satisfies

| @,u)| =00 l (x, ) l

uniformly for te l.
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Examples of such control systems can be easily constructed from the
following #th order nonlinear control system (see also [8]), here #,yve E1,

YO+ aEy@,. 5@,y )y (@)
Feorta,y@, 9@,y Oy @
=6@,y@D,3@, " Du®
+fC @D, 5@, O, % @) .

Remark. A result corresponding to the above theorem is also valid for
nonlinear perturbations of system (2) when the derivatives B, (¢, x, %),
B, (¢, %, %) and B, (¢, x, %) are bounded on I X E* X E™. This type of system
was analyzed by Lukes for bounded perturbations. The proof follows that
above with the operator T defined on C,NL;, where

Li={zeC: |2t +e)—s@®|<k|el,e >0,te1}.

The additional details follow those of Lukes [2, p- 52].
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