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Analisi matem atica. — Common fixed  points on complete metric 
spaces. Nota di B r ian  F ish e r , presentata dal Socio E . M a rti­
n elli a nome del compianto Socio B. S egre .

Riassunto. — Si dimostra che, se S e T sono applicazioni di uno spazio metrico 
completo X in sè, con T continua, tale che

p (STx , TSy) <  c max {p (TT, Sy) , p (x ,y)}  

per tutti gli x , y  di X, dove o <  c <  1, allora S ed T hanno un unico punto fisso comune.

The following theorem was proved in a paper by Ray, see ' [2]:

Theorem i. I f  S and  T are two mappings of the metric space X into 
itself such that

P (S* , Ty) <  rp (x , y)

fo r  all x  , y  in  X, where o <  c <  I and i f  fo r  some x 0 in  X the sequence {xn} 
consisting of the points

^2w+l ~  n  , % 2 {n + l)  ~  > n  =  O i I 9 2 > * * t f

has a subsequence {xnk} convergent to a point z in X, then S and T have the 
unique common fixed  point z.

It was shown in [1] that this theorem is an immediate consequence of 
the following theorem:

Theorem 2. I f  S and T are two mappings of the metric space X into 
itself \ such that

p (S* , Ty) <  c? (x , y)

fo r  all x  , y  in X, where o <  c <  1, then S and T are identical contraction 
mappings.

We now prove a theorem for two mappings S and T which are not 
necessarily identical.

Theorem 3. • I f  S is a mapping and T is a continuous mapping of the 
complete metric space X into itself such that

p (STx , TSy) <  c max {p (Tx  , Sy) , p (x , y)}

fo r  all x  , y  in  X, where o <  c <  1, then S and T have a unique common fixed  
point z.

if) Nella seduta del 18 novembre 1977.
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Proof. L et.#  be an arbitrary point in X. Then

p ((ST)” * , T (ST)” x ) ' < c  max {p (T (ST)”*1 * , (ST)” x) , p ((ST)”"1 # ,
T (ST)”-1 #)}

<  c max {cp ((ST)”-1 x  , T (ST)”-1 x) , cp (T (ST)”-2 x  , (ST)”-1 #) , 

p ((ST)”-1 x  , T (ST)”-1 x)}

=  c max {p ((ST)”-1 # , T (ST)”-1 x) , cp (T (ST)”-2 * , (ST)”-1 #}

<  c2 max {p (T (ST)”-2 # , (ST)”-1 #) , p ((ST)”-2 # , T (ST)”-2 x)}

<  cn max {p (T# , ST#) , p (# , T#)} .

Similarly, we have

p (T (ST)” # , (ST)”*1 x) <  cn max {p (ST# , TST#) , p (T# , ST#)} .

Since c <  I, it follows that the sequence

{# , T# , ST# ,. • -, (ST)” # , T (ST)” # ,. •.}

is a Cauchy sequence in the complete metric space X and so has a limit z  
in X. Thus

lim (ST)” # =  lim T (ST)” x  =  z
n~> 00 n->  00

and since T is continuous it follows that Tz  — z so that z  is a fixed point 
of T.

We now have

p (T (ST)” # , Ss) =  p (T (ST)” # , STz)

<  c max {p ((ST)” # , T z ) , p (T (ST)”-1 # , z)}

and on letting n tend to infinity it follows that

p (z , S z) <  c max (p (z , Tz) , p (z f z)} — o .

Thus Sz =  z  and so z  is a common fixed point of S and T.
Now suppose that there exists a second common fixed point z . Then

p (z , z') =  p (ST^ , TS#')

<  c max {p (T^ , S z )  , p (z , z')}

=

and, since c <  1, it follows that z  == z  and so the common fixed point of S 
and T is unique. This completes the proof of the theorem.

We now note that the mappings S and T in Theorem 1 are not neces­
sarily equal. This is easily seen by considering a complete metric space X
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containing at least two points. Define a continuous mapping T on X by

T x  =  #

for all x  in X and define a mapping S on X by

Sx =  z

for all x  in X, where z  is a fixed point in X. Then

STx =  TSa; =  z

for all x  in X and so the conditions of the theorem are satisfied with c =  
but S is not equal to T.

This example also shows that the mappings S and T can possibly have 
other fixed points although a common fixed point has to be unique.

The condition that T has to be continuous is also necessary. This can 
be seen by letting X be the set of real numbers x  with o <  x  <  1. Define 
a metric by

? ( x , y )  =  \ x — y \  

for all x  9y  in X and define discontinuous mappings S — T on X by 

T (o) =  I , T x  — \  x  , for x  f i  o .

X is complete and

P (ST# , TSy) <  I  max { p  (Tx  , Sy) , p (x , y ) }

for all x  , y  in X but S and T have no fixed point.
By noting that

bp (Tx , Sy)  +  cp (x , y)  <  max {p (Tx  , Sy) , p (x , y)}

wherè o < 1 b ì c ì b - \ - c < : i ì we have the following theorem:

Theorem 4. I f  S is a mapping and T is a continuous mapping of the 
complete metric space X into itself such that

p (STx  , TSy) <  bp (Tx  , Sy) +  cp (x , y)

fo r  all x  , y  in X, where o ^ b ^ c ^ b - f c ^ C  1, then S and  T have a unique 
common fixed  point z.

On putting S =  T in Theorem 3 and Theorem 4 we have the following 
two theorems:

Theorem 5. I f  T is a continuous mapping of the complete metric space X 
into itself such that

p (T2 x  , T 2y) <  c max {p (Tx , Ty) , p (x , y)}

fo r  all x  , y  in X, where o <  c <  i, then T has a unique fixed  point z.
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THEOREM 6. I f  T  is a continuous mapping of the complete metric space X 
into itself such that

9 (T2 x  , T 2 y) <  bç> (Tx , T »  cç> (x , y )

for all x  , y  in X , where o < b , c , b - \ - c < . i ,  then T has a unique fixed  
point z.

The last example shows that the eondition that T be continuous in these 
two theorems is still necessary.

In the final two theorems the two mappings S and T can both be 
discontinuous. First of all we have

THEOREM 7. I f  S and  T are mappings of the metric space X into itself 
such that

p (STx  , TSy)  <  c m ax {p (Tx  , Sy) , p (x , y)}

for all x  , y  in X, where o <  c <  1 and i f  S# =  T x  fo r  some x  in X, then 
Sn x  x  fo r  n =  1 , 2 , • • •

Proof. Suppose that S# =  T x  for some x  in X . Assuming that Sr x  =  T r x  
for r =  I , 2 , n and some n, we have

p (STn x  , T S n x) <  c max {p (Tw x  , Sn x) , p (Tw_1 ^  , S^“1 x)} =  o

by our assumption. It follows that

STn x  =  TSW x
or

Sw+1 x  =  T n+1 x

since Sn x  =  T n x  by our assumption. The result now follows by induction. 
Finally we have

THEOREM 8. I f  S and  T are mappings of the metric space X into itself 
such that

p (ST* , TSy)  <  bp (Tx  , Sy) +  cp (x  , y)

fo r  all x  , y  in  X, where o - < b , c , b - \ ~ c <  1 and i f  Sx  =  T x  fo r  some x  in X, 
then Sn x  =  T n x  fo r  n ==' 1 , 2 , • • •
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