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Algebra. — Note on a linear matrix equation over a finite field.
Nota di Joun H. Hopges, presentata ® dal Socio E. MArTINELLI
a nome del compianto Socio B. SEGRE.

RIASSUNTO. — Si da un metodo per determinare il numero N, delle soluzioni
Xy, Xg,+ -+, X, dell’equazione matriciale (1.1) su di un campo finito, con lintervento di
certe somme esponenziali, e lo si sviluppa completamente per 7= 2,3 e per speciali
matrici A,C.

1. INTRODUCTION AND NOTATION

Let F denote the finite field of ¢ = p° elements for an arbitrary prime
p and integer d = 1. Except as indicated, lower case Greek letters will
denote elements of F and Roman capital letters will denote matrices over F.
A (s ,m) denotes an s Xm matrix and A (s, ; p) a matrix of the same size
having rank p. In this note we consider the problem of determining the
number N = N,, of solutions X,,---, X, over F of the matrix equation

(1.1). A X, C +-+A,X,C, =B,

forgiven B =B (s, andA; = A; (s, m;; 0, C;=C,;(fi,t;vpall 17 <
where X;= X;(m;,f;) all 1 =7 <#n. The problem was solved for the
case # =1 by the Author [1] a number of years ago, using exponential
sums. The result in this case can also be easily obtained directly by appro-
priate, partitioning of the matrices involved.

In the present Note, the numbers of solutions of (1.1) are found for
n = 2, 3 for certain special matrices A; and C;. Although the direct method
could be used in these cases, the results here are obtained by the use of
exponential sums. For » = 2 we show that this approach leads in a natural
way, for the A; and C; of arbitrary rank, to another as yet unsolved
matrix problem which can be avoided by restricting the A; and C; as
indicated in sections 3 and 4. The same techniques could be used to consider
(1.1) for arbitrary » > 1, but it appears that the general results will be
quite complicated and the author has not worked out the solution in case
n > 3. If for all 7, C; is the identity matrix of order ¢ so that f; = v; = ¢
then (1.1) and the results in this Note essentially reduce to an equation and
its solution given previously by Porter [2].

(*) Nella seduta del 18 novembre 1977.
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2. PRELIMINARIES

In addition to the notation introduced above, we let I (s, ; p) denote
the s X7 matrix having the identity matrix of order p in its upper left-hand
corner and zeros elsewhere and I; denote the identity matrix of order s.
_ If A = (&) is square, then o (A) = X, a;; is the #race of A and o sati-
sfies 6 (A + B) = 6 (A) -+ ¢ (B) and ¢ (AC) = ¢ (CA), when ¢ and the indi-
cated operations are defined

For ae F, we define

z-1

(2.1) e(w) =exp(zmit(w)lp) , t(w=a+ +---+o ,
from which it follows that ¢ (a 4 B) = ¢ (@) ¢ (B) and

g (x=0),
(2.2) ;e(w>=%o (= 0)

where the sum is over all ye F. Then, using (2.2) we can prove that if
Y=Y(,5,

¢ (Y=0),
(2.3 Ee{ccvm}:%o ¥ 0)

D

where the summation is over all D =D (¢, s).

3. THE CASE n = 2

Let P;,Q;, R;, T; be nonsingular matrices of appropriate sizes such
that for 7z =1, 2, :

(3.1) PiA;Qi=1(s,mi;0) and R;CT;=1(fi %;v).
Then for #» = 2, (1.1) is equivalent to the equation

(3.2) H=T(,m;e) Y 1(fi,2;v)To+
+POI(S9m2;92)Y2I(f2:t;v2>:PlBT2’

where Y, =Qi'X;R;' for i=1,2,To=Ti'T, and P,=P,P;.
In view of (2.3) and other properties of &, the number N, of solutions Y, , Y,
of (3.2) is given by

(33) Ny= ¢ % Pelo (@ —PB)D)]

=g ¥ e {—0 (P, BT, D)} xS, (D)xS, (D),
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where the summations are independently -over all D = D (¢, s),
Y, =Y, (my ,Ju) and Y, = Y, (m,,f,) and

S, (D) = ;e{c(l (fi,2;9) To DI (s, my 5 01) Yl)}.
S, (D) = ;Z{G(I (for2;v2) DPoI (s, my; 00) Yo) -

By (2.3), for a given D in (3.3), the product of the two inner sums
S; (D) and S, (D) will be zero unless the coefficients of both Y; and Y, are
zero. If we define TyD = (1;5) and DPy=(my;) for 1 =7 =¢,1 <7 <+
and multiply out the coefficients of Y; and Y, in S;(D) and S,(D), respec-
tively, we find that

/

sqm1f1+7n2.fz’ if (1) 15=0, all1=7/=v, and 1<7=< ¢y,
G4 SO0 =) and (2) my=o, all 15/ v and 155y,
\

O , otherwise.

If Ty, D and P, are partitioned into submatrices as Ty = (T,,) , D = (D,,),
Po=(P,y) for 2 =1,2 and v =1,2 with Ty; =T;; (v, V), Tro =T (v, 2—wy),
Toy = Tor (2 — vy %) Ty = Tt — v, 2—v;) and Dy = Dy (v, p1),
Dip=Dyp(va,8—01), Dy =Du(—va,p), Do =Dgp{—v,s—pp)
and Py = Py(pr, 0, Pro=Pele,5—0p), Pu=Puls—op, )
Py (s — oy, § — py), then the conditions (1) and (2) in (3.4) under which
the product is nonzero can be written as

(1) Ty Dy +TieDyy =0

(35) |

(2) DuPy +DpPy=0.

If we also partition By =P, BT, = B;),1 =7 =s,1 =7 =<¢,as By = (B,
for w=1,2 and v =1,2 with By = By; (p1,v2), By =By (p1,?—w),
By = By (s —py, V), Bgy =By (s —p,¢2—v,), then for arbitrary D as
partitioned above '

(3.6) e{—0c(ByD)} =e¢{—0cByD)}e{—0c(BpDy)}
e{—0(ByDp)} ¢{—0(BrDy)}.

Therefore, in order to determine N, by evaluating the sums in (3.3) it would
be necessary to sum the product on the right side of (3.6) over all D for
which Dy, is arbitrary, but Dyy , Dy, and D,, satisfy the equations (3.5). This
implies that in order for N,==o0 it is necessary (but likely not sufficient)
that By, = O, that is, B;; = O for all 7 > p, and j > v,.

Because of the difficulty in carrying out the summation in the general
case (it is not clear just how one would proceed to do this), we examine
the simpler problem obtained by assuming that in (3.1) P, = P, =1, so
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that P =I,, and T, = T, = I;, so that T, = I,. Then D = (§;;) = DP,=
= T, D so that conditions (1), (2) in (3.4) become conditions on the elements
8 = 7y = Ty of D itself. Without loss of generality, we may assume that
v; =v,. Then there are two mutually exclusive cases to be considered:

Case I. @, = p,. In this case condition (2) on D in (3.4) implies condi-
tion (1). If we take (possibly) different partitions of D = (D,,) and
B, = B = (B,,) from those above with Dy; = Dy; (v, , ga), D1z = Dya (Vo , $—p2),
Dy = Dy (£ — Ve, 02), Doz = Dy (¢ —2v, s — o) and By =By (s, v3), Bpy=
= B (P2, — V), By = Boy (s — g2, Vo), Bas = Bya (s — ps, £ —V,), then (3.6)
still is valid and condition (2) on D is equivalent to D;y = O. Substituting
(3.4) into (3.3) gives, since all terms vanish for which Dy, == O,

(3.7) Np= Q_St+m1fl+mzf2 E € {‘*_5 (B1zDap)} e{—0(Byy Dy} e {—0(BnDy)},

Doy, Dig, Dog

where the sum is over all Dy, , Dy, , D,, independently. In view of (2.3) this
sum is equal to zero unless By, = O, By, = O and By, = O, when its value is
g%, where w = g, (£ —v,) + vy (§ — o) - (s — po) (¢ — vz). Substituting this
result into (3.7) and simplifying gives.

THEOREM 1. If n =2 in (1.1) with vy < v, and o, = p, and there exist
nonsingular matrices Q; and Ry such that A;Q;=1(s,my; p;) and R;C; =
=I1(f;,2;v) for i = 1, 2, then the number of solutions of the matrix equation
over F is

(3.8) N, = g™mftmla=ez 4(B)

where if B= By) for 1 i =s,1 =] =t then h(B)=1 if Bj;=o0 for
all i,7 such that 1 > g, or j > vy, and h (B) = o otherwise.

Case 2. oy > p,. Let D and B be partitioned as indicated preceding
(3.6) and B;; and Dy, be further partitioned as B;; = (E,,) and Dj; = (G,,)
for w=1,2 and v=1,2 with E; =E; (ps,v), Epp= E;5(pa, va —v),
En =E;y(ei—p2 V) En=En(pr— 2, ve—w) and Gy = Gy (v, pa),
Gz =G (v, o1 —02)s Gar = Gay (e — V1, 02)s Gop = Gy (o — vy, o1 — 02)-
Then it is easily seen that conditions (1), (2) on D in (3.4) are equivalent
to Gy =0, G, =0 and Gy, = O and for D satisfying these conditions,
e{—06(Byy Dyy)} = ¢ {~— 6 (Ep, Gy»)}. Therefore, using (3.4) in (3.3) gives
in this case

(3-9) N, = q_8t+m1fl+m2fz Z e {— 0 (EpGp}xZ,

Ego

where = is a sum of the form of the sum in (3.7), but for (possibly) different

partitions of B and D. Applying the same arguments as in the proof of
Theorem 1 leads to
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THEOREM 2. If n = 2 in (1.1) with v, v, and o, > pp and there exist
nonsingular matrices Q; and R; such that AQ; =1 (s, m;; ¢;) and R;C; =
= I (f;,2;v) for i = 1, 2, then the number of solutions of the matrix equation
over F is

(3_10) N, = qm1f1+7nzfz—92\'2—91"1+92V1 /Z(B) ,

where if B= Py) for 1 =i <s,1 =27 =¢ then h(B) =1, if B;; =0 for
Alli,jsuchthati > gporj=>v, o 92<7 S pyand v, <j = vy, and &t (B) = o
otherwise. ‘

4. THE CASE # = 3

For the sake of brevity, the results in this case will be simply stated
without proofs. The proofs are quite similar to those given for Theorems
1 and 2z but somewhat more complicated.

THEOREM 3. [f n= 3 in (1.1) and there exist nonsingular matrices Qi
and R such that A;Q; =1 (s, m;; p) and R, C;, =1(f;,2;v) fori =1, 2, 3,
then the number of solutions of the matrixz equation over ¥ is ¢° 7% (B),
where, if B = ;) for 1 ¢ =5, 1 £j ¢, then ¢ and & (B) are defined as
Jollows:

Let M = max (p;, pa, p3) and K = max (v, v, Vg).

Case I. For some » ,M = p, and K =v,. Then
e =mfi +mfy +msfs —MK,

41, Bi; =0 forall 7,7 such that ¢>M or ;> K,
/ (B) | ’
(o, otherwise,

Case 2. For all », if p, =M, then v, < K.
Let £#=max {v,|p, =M} and m = max {p,|v, = K}.

(@) For some » ,m < p, <M and £ <v, < K. Then

e=mfy+myfs +msfs— v, —EM—p) —m(K—v,)),
1, if B;=o0 forall 7,7 such that i >M or j>K
or o, <=M and £<j=<v,
& (B) = ot m<i=p and v,<j=K
of p,<i=M and v, <j=K,

o, otherwise.
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() No 7 exists as in (a). Then

e =myfy + mof, + myfy + mbk —mK -~ M
(1, if B,=o0 for all 7,; such that 7 >M or 7> K
% (B) = or m<i<M and £<j=K,

o, otherwise.

REFERENCES

(1] JonN H. HoODGES (1965) — The matrix equation AXC = B over a finite field, « Riv. Mat.
Univ. Parma », (2) 6, 79-81.

[2] A. DUANE PORTER (1973) — The matrix equation Ay Xy ++-++ A, X, = B in GF(g),
«J. Natur. Sci. and Math.», 13 (1), 115-124.



