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Algebra. — /nfinitely many perfect and wunitary perfect poly-
nomials ™. Nota di Jacos T.B. Bearp Jr., Arice T. BuLLock e
Mickie Sue HArBIN, presentata® dal Socio E. MARTINELLI a nome
del compianto Socio B. SEGRE.

RIASSUNTO. — Dopo avere ottenuto vari casi per ¢ = g% in cui su GF (g) esistono
infiniti polinomi irriducibili che sono unitari e perfetti, si studia il numero di tali polinomi
in altri casi e si fa per esso una congettura.

I. INTRODUCTION AND NOTATION

The language of this paper is that of [1], [2]. Briefly, a monic polyno-
mial A =A (x)e GF [¢,x],9 = p% d > 1, is called perfect over GF (¢) if
and only if the sum o6 (A) of the distinct monic divisors in GF [¢,x] of A
equals A. If A, Be GF [¢, x] are monic, B is called a wnitary divisor of
A if and only if (B,A/B) = 1. The monic polynomial Ae GF [¢,x] is
unitary perfect over GF (g) if and only if the sum o* (A) of the distinct unitary
divisors in GF [¢,x] of A equals A. The polynomial AeGF [¢,x] is a
splitting polynomial over GF (¢) if and only if A factors in GF [¢, x] as the
product of linear irreducibles; otherwise, A is a mon-splitting polynomial
over GF (¢). The monic polynomial Pe GF [¢,x] is prime if and only if
P is irreducible over GF (¢). For brevity we write A —D to indicate
6 (A) = D or, in context, ¢* (A) = D, and recall that the functions ¢ and
o* are multiplicative on th’Sir domains. Thus if Ae GF [¢, x] has the cano-
nical decomposition A = ] P{¥ where the primes P;e GF [¢, #] are distinct

=1

and the « () > o, then

. k o ko af) E Pu(i)+1 1
(1) A TP =TT R Pi=TT—5——
1=1 =1 7=0 t=1 )
and
* k v . : k -
(2 A T o* (PF®) = TT (PF® + 1.
=1 =1

From [2; Theorem 3] the number SP (¢) of splitting perfect polynomials
over GF (g) is infinite. Concerning the number NSP (¢) of non-splitting
perfect polynomials over GF (¢), [2; Table 1] established NSP (2) = 11,

(*) This research was partially supported by an Organized Research Grant from
The University of Texas at Arlington.
(**) Nella seduta del 18 novembre 1977.
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NSP (3) = 16, NSP (5) = 13, the lower bound on NSP.(2) remaining that
of Canaday [7]. Our present results (Section 4) on the infinitude of NSP (29),
NSP (3%), NSP (5%) are almost incidental. The primary results of this paper
have followed the study of numerous examples, hand-constructed by Bullock
and Harbin, of non-splitting unitary perfect polynomials over GF (p),
$=2,3,5. ‘Previously [1; Theorems 6, 7] it was determined that for each 7,
there are infinitely many splitting unitary perfect polynomials over GF (g),
and that there exist at least 28 (3) non-splitting unitary perfect polynomials
over GF (2) (GF (3)). Here (Theorem 1) it is established that GF [g, «]
contains infinitely many non-splitting unitary perfect polynomials over GF (g)
provided it contains at least one. This general existence question remains open,
but the question it would answer is weak. A natural equivalence relation
g defined on GF [¢,x] (Section 2) illuminates the better question: to
determine the number of distinct § equivalence classes containing (non-
splitting) unitary perfect polynomials over GF (¢). E.g., the infinite set
{x* (1 + x)*"} of splitting unitary perfect polynomials over GF (2) is preci-
sely the 2-equivalence class containing # (1 + %), while the 28 non-splitting
unitary perfect polynomials over GF (2) given in [1] determine 18 2—equiva-
lence classes as in Section 5. The numbers SUP (¢) and NSUP (¢) of distinct
. g—classes containing splitting and non-splitting unitary perfect polynomials
over GF (g) respectively are discussed in Section 3. Not known to be deter-
ministic, the algorithm used to construct the examples in [1; Table I], [2;
Table I] and Table I of Section 5 is discussed briefly.

We gratefully acknowledge the comments and suggestions of Professors
Leonard Carlitz and Robert M. McConnel.

2. ¢-EQUIVALENCE oN GF [¢, %]

For all A, BeGF [¢,x] we say that A is g-equivalent to B, written
A 7 B, if and only if there exists an integer / (negative, zero, or positive)
such that A = B where g = p% 4 > 1. It is clear that 7 is an equivalence
relation on GF [¢,«], each §-class A contains a unique polynomial C of
minimum degree, and that C ¢ GF [¢,2?]. We call C the representative of
the §-class A, and emphasize A = {C""},»,. The concept of g~equivalence
is motivated by

THEOREM 1. Let Ae GF[g,%],¢=p%d > 1, and let n =>0. Then
A is unitary perfect over GF (g) if and only if AP" is unitary perfect over GF (g).

Proof. From (2),

k k - k ) .,
AP 1I Pg(%)p” o* I (Pg(%)ﬁi +10) =TI (Pg!(ﬂ + 1)

3=1 i=1 i=1
7%

= (131 (PF 4 1)) = (é* A"
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THEOREM 2. Let A,CeGFg,x],¢=7p%d>1. If AGC, then
A and C are simultaneously (splitting) (non-splitting)) unitary perfect poly-
nomials over GF (g).

Proof. The results are evident from Theorem 1 and its proof.

3. THE NUMBERS SUP (¢) AND NSUP (g)

From Theorem 2, either all polynomials in a J-class are unitary perfect
over GF (¢) or else none are. Moreover, all of the polynomials in a §-class
split over GF (¢) or else all of them are non-splitting over GF (¢). Thus it
is appropriate to define SUP (¢) as the number (perhaps infinite) of distinct
g-classes containing splitting unitary perfect polynomials over GF (¢), and
NSUP (g) as the number of distinct §-classes containing non-splitting unitary
perfect polynomials over GF (¢).

The splitting unitary perfect polynomials over GF (p) have been charac-

p—1
terized [1; Theorem 8] as precisely those polynomials A = H(x—z')N”"
i=0
where # > o and cither i) p=2and N =1,0r fi)p > 2 and (p —1)/N =0
(mod 2). Letting 7, (#) denote the number of even positive divisors of the
integer m, we have part of

THEOREM 3. The number SUP (q) of distinct G-classes of splitting wuni-
tary perfect polynomials over GF¥ (q) is given by

I v g=2
SUP(9) =1 1.(¢—1), f ¢g=p>2
oo y O 9FP.

Proof. There remains only to show SUP (q) = co whenever ¢ = p¢
and 4 > 1. We generalize the example following Theorem 2 in [1]. Choose
@y, -y ag1€ GF (g) such that (g, + GF (9)) O (a; + GF (p)) = ¢ for £ #.

p—1 :

Then each polynomial A; = T[] (¥ — @ — 7) is unitary perfect over GF (g)
i=0

and the A, are pairwise relatively prime. For all distinct sequences of integers
n(1), .-, n(p*"Y) >0 such that at least one #z (£) = 0, the polynomials
of the form

N

. L p"%)
®) A=TIA =TT O@—a—)"
k=1 k=1 i=0
are the representatives of distinct splitting unitary perfect §-classes.

The above proof-technique easily establishes

THEOREM 4. Let A, Be GF [g, x] be unitary perfect over GF (¢) , ¢ = 29,
d=>1. If (A, B) =1 and B does not split in GF [gq , x], then NSUP (g) = oo.
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In constructing the polynomials A in (3), exactly one of the chosen g
lies in GF (p), call it ;. Then the polynomials (for any choices of 7 (£) = 0)

of the form
pd-l p—1

@ A =TI II (¢ — a7

p-1
are splitting unitary perfect polynomials over GF (g) with (A', 1l &= — z)) = 1.
i=0

In Table I (Section 3) we note the non-splitting unitary perfect polynomials

over GF (2):

() By=a?(+2P(+a+a7) , By=2 (1427 (14229 (1422 -+
over GF (3):

©) By =2 (1 + 2P (2 + 22 (2 +x+2) (2 +2x+29;

and over GF (s): |

(1) Ba=#A( + 2P+ 200G+ 2R+ 2R (2 + 2D (3 + A

Since the irreducible quadratic factors of B, (Bj) ((By)) over GF (2) (GF (3))
((GF (5))) remain irreducible over GF (2%) (GF (39) ((GF (5%))) for all odd
integers & > 1, then B, (B,) ((B,)) is a non-splitting unitary perfect poly-
nomial over GF (2%) (GF (3%)) ((GF (59) for each odd & > 1. Similarly, Byisa
non-splitting unitary perfect polynomial over GF (2%) for each (even) integer
d == o (mod 3). '

THEOREM 5. NSUP (2%) = oo for cach odd integer d > 1 and for eack
(even) integer d 3= 0 (mod 3). NSUP (3%) = oo = NSUP (5%) for cach odd
integer d > 1.

Proof. Apply Theorem 3, taking A=A’ in (4) and B = B; in (s),
©), (7).

4. THE NUMBER NSP (¢)

We are without a * perfect ”” analog of Theorem 1, but are still able to
mimic the preceding arguments beginning with the identified portion of the
proof of Theorem 2. In the place of Theorem 1, we appeal to [2; Theorem 1]:

the polynomial A = ] (x — a)?"-! is perfect over GF (g) for each » > o.
aeGF(g)

Modifying the polynomials in (4) only by changing the exponents on the
linear factors, we generalize the example in [2; Section 3], obtaining poly-
nomials '

pd--l p—1

® A =TT TT (e — e —
k=2 =0

20. — RENDICONTI 1977, vol. LXIII, fasc. 5.
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p—1
which are splitting perfect polynomials over GF (¢) with (A", HE&— z)) =1,
i=0

for all choices of the 7 (£) = o. Since the product of relatively prime perfect
polynomials over GF (¢) is perfect over GF (g), the non-splitting perfect
polynomials [2] over GF (2):

2(1 4220 +x+2%) , 20 F+280 42280 4 2+ 28

over GF (3):
x(14+2)°%02 +2?2 02 +2x 1+ 25;

and over GF (5):

P+ +2PC )@+ +NHE+4)EB+3x+ 2
4+32+2@+22+20)@E +22+29;

together with the appropriate A" in (8), yield

THEOREM 6. NSP (2%9) = co for each odd integer d > 1 and for each (even)
integer d == 0 (mod 3). NSP (39) = oo = NSP (5%) for each odd integer d > 1.

5. UNITARY PERFECT ¢-EQUIVALENCE CLASS REPRESENTATIVES

In Table I, the p-class representatives are given for all currently known
non-splitting unitary perfect p-classes over GF (p) establishing NSUP (2)>> 33,
NSUP (3) = 16, and NSUP (5) = 6. The polynomlals which are starred (¥)
here are the - ~class representatives of the p-classes determined by the
examples in [1; Table 1]. (Several of the starred representatives do not
appear in [1] as they were discovered, inexplicably, only after Theorem 1
was realized). In the construction of non-splitting perfect [2] and unitary
perfect polynomials, we have relied heavily on [3]-[6] and the algorithm to
follow (modified in the obvious fashion to obtain perfect polynomials):

Step 1. Compute and factor o*(x®) obtaining
®
i=1

Step 2. If the left and right sides of the statement (9) are equal, stop.
Otherwise, replace the left side of (9) by the Zc.m. of the left
and right sides of (9) and compute the new right side of (9).
Repeat Step 2.

The trial balloon built into Step 2 frequently has drastic effects, and the
algorithm is not thought to be deterministic. Other examples have been found
by initiating the algorithm at 2” (1 -+ x)*, etc., motivated originally by having
obtained examples divisible by both #* (1 + x)™ and 2™ (1 + x)". The ineffec-
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tiveness of the algorithm is clear on noting the 2-equivalence class represen-
tatives of degrees 23 and 20 divisible by % (1 +x)° and 2° (1 -+ x)%, yet
only one known representative divisible by #° (1 4+ #)°. (The two 2-equiva-
lence class representatives involving x* (1 -+ x)° were found by an exhaustive
computer search [1; Section 3]). In fact, the four examples involving the
form x* (1 + x)® or 2® (1 + x)* were not all determined using the algorithm.
Professor Carlitz has reminded us to expect, as in the case of perfect polyno-
mials, the polynomials A (x),A{(x +1),---,A(x + p— 1) to be simulta-
neously unitary perfect over GF (), and two of the aforementioned examples
(as well as several others) have been so determined. after using the algorithm
to discover A (x). The more general expectation holds as well, as in

THEOREM 7. Let A (x)e GF [¢,x],¢9=p?,d =1. If A(x) is perfect
(unitary perfect) over GV (¢) and be GF (¢), then B (x) = A (x + b) is perfect
(unitary perfect) over GF (q). :

Progf. We prove the result in the case A (x) is unitary perfect over
GF (), a similar argument sufficing in the event A (%) is perfect over GF (¢).
k

Let A (v) = II (P; (@)™ where the primes P;(x)e GF [¢,x] are distinct
im1
and the o () > 0. Let GF (¢°) be a splitting field for A (x) over GF (g).

Then there exist a; ,- - -, g€ GF (¢ such that for each 7, 1 <7 <, we have
B@)—1

i = 1 (e —al),

where deg P;(x) =8 (2). Since the P;(x) are pairwise relatively prime over
GY (¢), the P;(x) are pairwise relatively prime over GF (ge) [9; p. 119].
Moreover, for each e GF (g),

BE)—-1 BE-1

P+ =1L @ o—at) = 1T [x—(a—o'].

j=0

Since each a; — é has degree (z) [8; Lemma 3.3], it follows that each
Q; (x) = P; (x 4 b) is prime of degree 8 () in GF [g, x], the Q, (x) are pairwise
relatively prime in GF [¢, x] and, hence, the primes Q; (x) are distinct. Thus
if A (x) is unitary perfect over GF (g),

(100 A@)= ,f:Il(P" () ", ;[iIl [Py (%D 4 1] = }i[l (P, (),

and from’ the right-most equality in (10) we obtain tfle right-most equality in
B@)=A@F+4= ilill@i (@)~ 1i1 [(Q: @)+ 1] = Tj[ Qi ),
so that B (x) = A (x -+ 6) is unitary perfec;c over GF (@- '

Our failure to obtain examples of non-splitting unitary perfect poly-
nomials over GF (p) for p > 7 is felt to be due solely to the limited extent
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of our factorization tables. Likewise, we expect there are non-splitting perfect
polynomials over GF (p) for each p > 4. Several other conjectures appear

reasonable,

i)

though strong. Among them are the following:

For each ¢ and each prime polynomial Pe GF [¢, x], P divides
some unitary perfect polynomial over GF (g).

For each p and each unitary perfect polynomial A over GF (p),
the polynomial H (x — ) divides A.
For each p and each odd mteger d > 1, NSUP (p%) = oo.

p—-1

For each p and each integer & > 1, the polynomial J] (x — 1)¢
i=0

divides some unitary perfect polynomial over GF (p).

As observed in [1], the statement (ii) holds for p = 2.

TABLE I

Some Distinct Non-Splitting Unitary Perfect p-Class Representatives

2 Degree

2 7

10

16

17

18
19

20

22

23

26

Complete Factorization
* 221230+ xa?)
* 31422 (1 +xa?)
* 3042 (1 x4 a2
* A+ 2P (1 + 2P+ i)
oS (a8 Y
S4B F a2
ot 27 (1 x+28)(1 Fa? a8
¥ AT (4201 +x +43) (1 a2 28
PO ;O +A a0t rfa® a8 )
S e A G I S 2 S L ¢ G R N e N )
A I S LY C I P P LN ¢ G N R )
RN G B SO LY ¢ G R R ) L ¢ G SN L)
AR TS LY ¢ SRR RPN ¢ I M R
B+ 4+2+230 +22+23)0 A+ x4 22+ 25 29
AT AP+ F R3O 8+
2+ 2% (1 F a2 (1 v 2B a5
W+ x4 aD2(0 +a 4280 2B
(4280 +x a1+ a3 Fa® 4B
(A2 b a2 a3 4 )
21+ 27 (1 + 2+ 232 (1 4 22+ 258)2
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TABLE I (Cont.)

Y/ Degree

2 29

37

38

39

41

58

62

66

86

25

36

Complete Factorization
AU+ 220 2P0 a0 4+ a4t )
AN G TN SR RPN G R NI L N € N R Ry 7))
A+ o0+ 2% b2+ a4 a7 A a® 410
D I L R N R R L

(1 +x+ 22428 420 4 25+ 20 4 27 - 28 - 2 - 219
A+ Fr+200 + 23+ F o a8 42t 425
B+ +ax+a220+r -+ 42242+ a4 a8 42
O e MO o o L G SR e o D RO o e o N e o e A i)
O o o A CIE A P A SR S e A e N )
B+t a2

(O Fz4+2%+ 2% Lt 25 28 27+ 28 1 2% 4 210 4 21 - 212
AT (1 La L a® a8 M (1 2 a2

(14 x + 2%+ 27 4 28 + 2% + 219

(142 422+ 2t 25 a8 a7 a8 2% 210
A5+ (1 L L (1 xR (1 2 a2

(1 + 2428+ 2% 4+ 29?2
AP+ A a8 L2t A A At T

(0 +x 2428420+ 25+ 48+ 47 + 28 4 20 - 210 4 211 | 212y
T 4220 F xR (1 2R A5

(T+x+a22+20 425 (0 + 2+ 22424+ a0 447+ 48)

(T +22+8+25 4280+ 25+t + 25448

(1 + 2% 4+ 2% + 2t 425 427 4 45

...................................................................

B+t 220+ +x+ a2 (2+ 22+ a?)
2a+aPe+a@tr+a2+a) (220422 428 1Y)
B2+ +2x+22 40 F22+22 12
BA+aPeta)fe+2+30+2xr+ 24228 + 29
A2+ B2+ +D) @+ +22 243+ 1Y
(24 x+222+ 24% 29 \
Ba4xBeta2t+xr+ 1)
24tz2r+aHa+2+282F2)(2t2x+ 222 423429
BU+22@+x20+)t2x+a)(2+a224+ Y2+ 222 + 1Y
A+t 2+ 0+ 2224+ 222 (2 422 222 (2 - 222 + 1Y)
(24+x+222+222 4+ +22+222+ 42+ 29
P48+ +24+23 0 f+2x+22 42802+ r+a2+ 48
(Ut2r 422+ F22x+2+28+a)(2+204 22423+ 2Y
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TABLE I (Cont.)

Vi Degree

3 37

54

57

60

Q0

35

Complete Factorization

O+ +223 0@+ 2x +a23 (1 4242 443 - 245 4 25
(2 4 222 -+ 28 + 245 4 25

B+ 2480+ e+ 280 42+ 2t 245 4 25
(2 + 2% + 2214 225 + 25

2 F a2 F 82 f 4288 (2 +2x +27)°
(1 +2x 4224223 + 22+ 245 4 1)
(2+2x 4224 22% + 24 L 245 + 25

PO ArBe 2P0+ (2 +r 4222+ 22422 (2 122 1 1Y
(24222 L2 (1 + 22+ 34+ 2Y (1 + 224 223 F 1Y
tert2+2°2 )@+ a 224 24% 1Y)

242072+ f2x 4%+ 228 + 4245 & 45
(1 4222+ 2% 4 225+ 28 (1 + 23 4+ 2244 - 225 4 45
4zx+a2 428 421 225428 (2 4 222 + 48 + 225 + 1)
(2 +2%+ 224 F 225 1 45

200 4000 4201 442 (2 F 2+ 22 (2 + 22 4 aP)
(tHzx+2 40 +r+ 22+ +rt2h) (2 t2x+ a4
(2 + 4% 4 o) (2 4 223 4 29

AV 4+ 2+ (1 22 2+ x4+ 22 (2 22+ 4?2
(142224230 +x+2224+5 @+ 201222 + 19)
(t2x+2% + 29 (2 +x+a" 2+ 28+ 28142 v 422242 43425
(1-4+222+22%+ 224 +a% (2 4+ 22 + 224 45)
tzxt+228 4+ 4250+ 2+ 24445 (2 F2x 224 28 4 45

22 +a2E+ 224+ 03+ 32+ 2 (4 + 32+ 422

22242 GE 0N 0 da +a2) (2 oz a2

P+ + 2 G+ @+ 220+ 45 +22) (24 42 + 222

R+t 2+2?2G+H2P @+ 0@+ 2242 (4 + 220 + 222

21 H+ 222+ (G+024+02 (2 + 47 (3 + 422

B+ +aP G+ +aP G340 +x+ 27
+r+a2®)G+2r+2@+220 4283+ 32422
(@+32+N 0 +4x 422 (2442 + 2%
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